Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
Это захватывающая 2D рогалик, аркадный шутер и динамичная игра. Исследуйте уникальные уровни, уничтожайте врагов, собирайте монеты и прокачивайте своего персонажа.

Подземелье дизлайков

Экшены, Аркады, Шутер

Играть

Топ прошлой недели

  • AlexKud AlexKud 40 постов
  • unimas unimas 13 постов
  • hapaevilya hapaevilya 2 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
4
EofruPikabu
EofruPikabu
1 месяц назад
Край Будущего

От гидратационных слоев до наноструктур: ключевая роль воды в организации пептидов в двумерных наноматериалах!⁠⁠

Исследователи из Института нанотехнологий (WPI-NanoLSI) Университета Канадзавы (Kanazawa University) представили небольшой отчет о том, как короткие пептиды линейно самоорганизуются на твердых поверхностях толщиной в атомы, таких как графит и MoS2.

Работа решает давнюю задачу материаловедения — понимание сложных, зависящих от последовательности взаимодействий пептидов с твердыми субстратами, а также ключевой роли локальных структур гидратации в формировании наноструктур. Это открывает новые возможности для интеграции биомолекул с передовыми материалами в биосенсорах и биоэлектронике.

Для практических биотехнологических устройств важно упорядочивать биомолекулы на неживых поверхностях. Специально разработанные пептиды способны самостоятельно организовываться в структурированные линейные кристаллы, совпадающие с атомной решеткой подложки.

Команда под руководством Айхана Юртсевера, Такеши Фукумы и Линхао Суна из Университета Канадзава совместно с учеными из Института науки Токио и компании DMXi Dentomimetix (США) провела детальное исследование процесса сборки пептидов на неорганических поверхностях. С применением современных визуализационных методов и компьютерного моделирования, возглавляемого Фабио Прианте и Адамом С. Фостером из Университета Аалто (Финляндия), они подчеркнули важную роль воды как растворителя.

В исследовании использовались короткие дипептиды с чередующимися аминокислотами — гидрофобным тирозином (Y) и гидрофильным гистидином (H). Изменяя число повторений YH (3, 4 и 5), ученые изучали формирование линейных кристаллических структур, ориентированных по двумерной кристаллической поверхности графита и MoS2.

Продвинутые 3D-атомно-силовые микроскопические измерения показали, что взаимодействие пептидов с водой формирует неоднородные гидратационные оболочки, окружающие структуры и создающие специфические участки связывания. Эти особенности важны для селективного распознавания молекул и взаимодействия с другими биомолекулами. Молекулярное моделирование подтвердило наличие водородных связей, стабилизирующих гидратационный слой.

Результаты открывают перспективы для рационального проектирования пептидных гибридных материалов с контролируемыми функциями, что важно для биофункционализации в биомедицине и нанотехнологиях. Упорядоченные пептидные решетки могут служить шаблонами для организации неорганических наночастиц с субнанометровой точностью, что позволит исследовать квантовые эффекты.

Кроме того, пространственное расположение боковых цепей пептидов может создавать каталитически активные участки, имитирующие природные ферменты, а также обеспечивать иммобилизацию биомолекул для изучения молекулярного распознавания и высокоэффективных каталитических интерфейсов в электрохимии.

В настоящее время исследователи продолжают изучать локальные структуры гидратации вокруг пептидов, связывающихся с твердыми поверхностями, чтобы глубже понять влияние гидрофобных и гидрофильных последовательностей на организацию воды и механизмы автоматического сбора пептидов на субстратах.

Показать полностью
Наука Технологии Нанотехнологии Ученые Композитные материалы Инновации Текст
0
4
PNIPU
PNIPU
1 месяц назад

Ученые Пермского Политеха изучили, когда незначительный удар становится опасным для самолетов⁠⁠

Современные композитные материалы, такие как углепластики, широко используются в авиации, космонавтике, автомобиле- и судостроении благодаря их легкости и высокой прочности. В самолетах нового поколения (например, Boeing 787) их доля в конструкции составляет около 50%. Однако композиты уязвимы к скрытым повреждениям, возникающим при столкновении с градом и камнями, падающими инструментами, при жестком приземлении. Такие дефекты опасны потому, что могут оставаться незамеченными, но при этом значительно снижать прочность материала, приводя к внезапным поломкам. Ученые Пермского Политеха провели исследование, чтобы понять, как удары влияют на механическое поведение композитов. В результате они установили пороговую чувствительность – тот уровень повреждений, после которого начинается резкое снижение характеристик материала.

Статья опубликована в журнале «Mechanics of Solids», том 59, № 5, 2024. Исследование было выполнено в рамках государственного задания Министерства науки и высшего образования Российской Федерации (проект № FSNM-2024-0013) на кафедре «Экспериментальная механика и конструкционное материаловедение» ПНИПУ.

Композиционные материалы, особенно углепластики, все шире используются в авиации, космонавтике, автомобиле- и судостроении благодаря их высокой прочности при малом весе. Однако у них есть недостаток — даже небольшой удар может вызвать существенные внутренние повреждения: расслоение, трещины. Особую опасность представляют так называемые BVID (barely visible impact damage) — повреждения, почти незаметные снаружи, но приводящие к скрытому ухудшению структуры материала изнутри. Такие дефекты могут возникнуть, например, при столкновении самолета с птицами во время полета, градом или камнями на шоссе во время взлета или посадки, из-за упавших инструментов при монтаже. Эти дефекты не всегда видны невооруженным глазом, но могут серьезно снизить прочность конструкции, появляется необходимость в ремонтах и сокращается срок службы самолетов. Поэтому крайне важно понимать, как даже слабые удары влияют на дальнейшее поведение материала под нагрузкой, чтобы предотвратить аварии и обеспечить безопасность.

Группа ученых кафедры «Экспериментальная механика и конструкционное материаловедение» Пермского Политеха провела серию экспериментов с образцами углепластика.

– Сначала мы определяли исходные механические свойства материала, затем наносили удары падающим грузом с помощью специального оборудования. Энергия варьировалась от 1 до 6 Дж — этого было достаточно, чтобы не разрушить образец полностью, но оставить внутренние повреждения. После этого композиты подвергали растяжению для оценки изменения их прочности и жесткости, – комментирует Валерий Вильдеман, профессор, заведующий кафедрой «Экспериментальная механика и конструкционное материаловедение» ПНИПУ, директор Центра экспериментальной механики, доктор физико-математических наук.

Ученые Пермского Политеха изучили, когда незначительный удар становится опасным для самолетов ПНИПУ, Композитные материалы, Самолет, Повреждения, Длиннопост

Поля продольных деформаций образцов / © Олег Староверов, пресс-служба ПНИПУ

– В результате экспериментов мы установили пороговую чувствительность к удару – это такой уровень повреждений, после которого начинается резкая потеря прочности. То есть качество материала снижается неравномерно. Можно выделить два этапа деградации композитов: плавное снижение свойств и, после определенного уровня повреждений, резкое ухудшение. Как мы выяснили, для показателя прочности этот уровень составил 0,637 относительной единицы энергии удара, а для жесткости – 0,815, – рассказывает Олег Староверов, доцент кафедры «Экспериментальная механика и конструкционное материаловедение» ПНИПУ, старший научный сотрудник Центра экспериментальной механики, кандидат технических наук.

В авиации инженеры могут использовать эти данные для того, чтобы решить, можно ли дальше летать с найденным повреждением крыла или нужно провести срочный ремонт. Если повреждение ниже порога — самолет еще может оставаться рабочем состоянии, но если выше — требуется немедленное вмешательство.

Исследование ученых Пермского Политеха важно не только для теоретического понимания процессов ухудшения качества композитов, но и для практического применения в инженерном деле. Теперь специалисты смогут точнее оценивать степень повреждений конструкций и принимать обоснованные решения об их дальнейшей эксплуатации, что важно в авиастроении, автомобилестроении и других высокотехнологичных отраслях.

Показать полностью 1
ПНИПУ Композитные материалы Самолет Повреждения Длиннопост
1
6
EofruPikabu
EofruPikabu
1 месяц назад
Край Будущего

Из нановолокон получаются более прочные композиты из углеродного волокна!⁠⁠

Из нановолокон получаются более прочные композиты из углеродного волокна! Наука, Ученые, Инженер, Нанотехнологии, Наночастицы, Композитные материалы, Углеродные нанотрубки, Научпоп

Углеродное волокно подготавливается для проверки адгезии к полимерной матрице. Исследователи ORNL используют полимерные нановолокна для повышения адгезии и эксплуатационных характеристик композитов из углеродного волокна.

Исследователи из Лаборатории национальной энергетики США (DOE) в Оук-Ридже разработали новый метод, использующий углеродные нанофибры для улучшения прочности связи в углеродных волокнах и полимерных композитах. Это достижение может повысить качество структурных материалов для автомобилей и самолетов, обеспечивая легкость и прочность.

Результаты, опубликованные в журнале Advanced Functional Materials, открывают новые возможности для американских производителей в сфере энергетики и национальной безопасности. Суруп Гупта, возглавляющий проект, отметил, что гибридный метод, соединяющий химическое и механическое связывание, обеспечивает значительное увеличение прочности и жесткости материалов.

Углеродное волокно, представляющее собой композит с углеродными нитями, сталкивается с проблемой недостаточной адгезии к полимерной матрице. Исследователи ORNL предложили комбинированный подход, который обеспечивает до 50% увеличение прочности на растяжение и почти двукратное увеличение жесткости.

Ключевым элементом метода является электроспinning, в котором полиацилонитрил экструируется в нити шириной около 200 нанометров. Изменяя параметры процесса, исследователи могут создавать нити, которые эффективно связываются с матрицей и образуют «мосты» между различными материалами.

Группа подала заявку на патент на новую технику и планирует сотрудничество с промышленными партнерами. Они также исследуют возможность применения углеродных волокон в гражданской инфраструктуре и обороне. Основное ограничение для широкого использования углеродных волокон — высокая стоимость, и улучшение адгезии позволит сократить количество используемого материала.

Команда использовала передовые инструменты для характеристики и визуализации на субмикронном уровне, включая рентгеновское рассеяние и ядерный магнитный резонанс. Исследователи также применили суперкомпьютер Frontier для моделирования взаимодействия волокон с матрицей.

Исследовательская группа планирует продолжить совершенствование технологии электроформования, чтобы обеспечить больший контроль и лучшие результаты, одновременно изучая возможности применения других композитов, армированных волокнами. В настоящее время ведутся исследования по интеграции новой технологии с предыдущими исследованиями по разработке самочувствительных композитов, которые могут контролировать свое состояние с помощью встроенных

Показать полностью 1
Наука Ученые Инженер Нанотехнологии Наночастицы Композитные материалы Углеродные нанотрубки Научпоп
0
0
MadInventor
MadInventor
1 месяц назад

Перепишем учебники по полимерам вместе? Один уже не вывожу...⁠⁠

Здравствуй, уважаемое сообщество! Пикабу, давай вместе!

А что если я скажи Вам: то чему учат и то что известно о свойствах полимеров не так как есть на самом деле. Сделано это при помощи чайника и дрели на кухне... И это всё меняет!

Утрированно конечно, но примерено с этого я и начинал конструирование. Это Perpetuum mobile? Неа, это физика, химия и реология - новый способ, который весьма прост и значительно расширяет существующие возможности и понимание.

Как так? Мне всегда была интересна тема управления макромолекулярной ориентации в полимерных нитях. Я нашел один из верных и надежных способов, точнее сделал работоспособное устройство.

Ща объясню. Все мы знаем песни "Сектор газа". Поклонники нетленных произведений панк-группы "Сектор Газа" несомненно сейчас поймут о чем речь, та же часть аудитории, которая не знакома со строками, может ознакомиться с песней "План", начинающейся со слов "Я не алкаш и не пьяница я..." о тяжелой судьбе человека с нездоровым пристрастием к алкогольным напиткам... Из песни слов не выкинешь... В частности, есть там такие строки: "... или мотают БФ на сверло...". Очень распространенное явление в определенный период времени. В данном случае имеется ввиду медицинский клей БФ на спиртовой основе и речь идет о том, что несознательные граждане в погоне за пагубным пристрастием "накатить", а так же в связи с дефицитом алкоголя для оной категории граждан, пытались его добыть разными способами, в том числе ставили ёмкость с клеем БФ под включенный сверлильный станок на некоторое время, при этом за счет эффекта Вайсенберга, собственно главный компонент БФ (по сути, поливинилбутираль и фенолформальдегидная смола), полимеризуясь наматывался на сверло, оставляя в технологической чаше бурду в виде спиртовой основы с касторкой, канифолью и технологическим добавками... Нитки, к сожалению, никто не делал и ценный продукт выбрасывался ради жидкого остатка. Но не будь эффекта Вайсенберга, кто знает как бы звучала эта песня... Впору задаться вопросом: "Сколько жизней покалечил Карл Вайсенберг"?))))))

Если есть желающие более глубоко погрузиться в практику и теорию текстильной промышленности, прядения, экструзии и теорию неньютоновских жидкостей (коими являются все расплавы и растворы полимеров) - добро пожаловать в мой уголок хроник подпольной лаборатории на Habr`е, где я очень подробно разложил всю теоретическую суть с примерами и подробным объяснением тут (https://habr.com/ru/articles/785914/).

Здесь требуется небольшое пояснение. Я не академик (к ним пробиться нереально, пробовал - это как писать "на деревню дедушке", многие либо молчат, либо после начала разговора просто сливаются, а пытал я звонками и письмами и МГУ, и СПбГУ и РАН и многих других (да и заняты они своими давно и хорошо им известными темами и связываться с чем-то новым не горят желанием), в Греции и Чехии нашел пару светил, занимающихся вопросами хоть и "рядом", но не близко и те молчат, главная проблема в междисциплинарности - слишком много междисциплинарных наук связано воедино).

Роскосмос, Ростех, Газпром - молчит, Росатом (иннохаб) - вообще сказали что это почти волшебство и не будет работать, в общем у гигантов, несмотря на важность, отношение как к предмету находящемуся где-то между херомантией и астрологией, впрочем, ничего нового... Собственно именно поэтому я и бьюсь пока один, на собственной кухне, в свободное от работы время и тратя свои ограниченные финансы - отчего и назвал это "подпольной лабораторией"... Справедливости ради, отмечу, что получилось испытать полилактид (PLA) и полипропилен (PP) в лаборатории Института химических технологий РГУ им. Косыгина (родственный мне текстильный институт), за что я безмерно благодарен. За гранулят PLA и PP скажу спасибо команде BestFilamet (производитель филамента для 3D-принтеров) - отправили и экструдированный филамент и читый гранулят для испытаний - красавцы. Это фактически независимые верифицированные неафилированные данные, подтверждающие все гипотезы.

Перепишем учебники по полимерам вместе? Один уже не вывожу... Инженер, Будущее, Развитие, Композитные материалы, Химия, Исследования, Изобретения, Инновации, Физика, Тестирование, Российские ученые, Видео, Вертикальное видео, Короткие видео, Длиннопост

Вот основная конструкция. Чаша с кольцевым нагревателем и вращающейся иглой.

Как собрать такую штуку подробно писал на Habr`е тут и тут.

Как это работает:

А теперь суть:

Перепишем учебники по полимерам вместе? Один уже не вывожу... Инженер, Будущее, Развитие, Композитные материалы, Химия, Исследования, Изобретения, Инновации, Физика, Тестирование, Российские ученые, Видео, Вертикальное видео, Короткие видео, Длиннопост

Это итоговые данные испытаний мононитей PLA (полилактид) с указанием рабочих параметров устройства.

Перепишем учебники по полимерам вместе? Один уже не вывожу... Инженер, Будущее, Развитие, Композитные материалы, Химия, Исследования, Изобретения, Инновации, Физика, Тестирование, Российские ученые, Видео, Вертикальное видео, Короткие видео, Длиннопост

А это уже PP (полипропилен).

Этим данным можно верить. А теперь выводы. Возьмем только имеющиеся факты, но я уверен что можно смело говорить о всех термопластичных полимерах, а если получиться дойти до испытаний других полимеров, то с вероятностью 90% - для всех остальных.

Можно производить те же арамиды (как кевлар) минуя фазу растворения с серной кислоте, напрямую из реакционной смеси, что значительно улучшит срок службы (сейчас заложено 10-15 лет, если память не изменяет) и повысить его прочность!.

Можно производить технически сложные композиты с введенным штапельным (рубленным) волокном да еще и с кручением (в настоящее время практически неосуществимо на существующем оборудовании) и управлять прочностью волокон.

Существующие справочники говорят, например, полипропилен обладает прочностью на разрыв 23 МПа и до 39 МПа для ориентированных волокон, при этом удлинение на разрыв до 700% с сохранением модели: "Чем выше прочность тем меньше удлинение на разрыв (максимум прочности при минимуме удлинения)". Я говорю что это далеко не так, на самом деле возможности в процесса позволяют в процессе формирования волокна управлять его свойствами и получать другие диапазоны прочности от 15 до 35 МПа и, за счет упорядочивания макромолекулярной структуры и зон кристалличности и аморфности, закладывать возможность удлинения от 50 до 700% практически независимо от прочности, т.е. программировать свойства продукта. Или возьмем полилактид с прочностью 53 МПА и удлинением на разрыв 3% - неа, не так. На самом деле, по существующим независимым результатам мы можем получить прочность от 35 до 70 МПа и удлинением от 3 до 17%! И это только два доступных мне для проверки физико-механических свойства. Теперь можно смело и честно сказать, что тот же наш Отечественный полипропилен с прочностью, условно в 20 МПа, ничуть не хуже полипропилена какого-нибудь BASF с прочностью 24 МПа - теперь это простые параметры работы именно их экструзионной линии и больше ничего.

Короче, можно и реально прясть молекулы полимера.

Применение: в любой отрасли + добавляем трубчатые изделия, оболочки (кабелей к примеру).

Патент мне нужен был для хоть какого-то признания научной состоятельности (с официальным мне сложно, ввиду невозможности пробиться).

Если Вы не доверяете результатам - Супер! Просто отлично, я выложил все чертежи и параметры работы - собирайте, повторяйте - это только лишь будет очередным подтверждением! Я буду только рад этому!

Собственно, ребят, один я уже не вывожу ни по времени, ни по финансам... Есть понимание куда двигаться и как, может сделаем вместе народную науку? Вместе как-никак легче.

Буду рад любым советам и помощи особенно, если:

  1. Есть идеи PR-продвижения и маркетинга (и как сократить эту портянку и сделать проще для понимания))))))) продукта и создания бренда так как существующая академическая наука очень консервативна, а всем миром мы с дрелью пробъём этот потолок.

  2. У вас есть токарка - есть понимание и необходимость переделки, особенно выточить новые формы чаши, игл.

  3. Вы инженер и есть предложения по улучшению конструкции блока управления.

  4. Есть 3D-принтер (филамент оплачу) - распечатать новые детали и скорректировать существующую 3D-модель оборудования.

  5. У вас есть доступ к испытательному разрывному оборудованию для дополнительных тестов.

  6. Есть доступ к ИК-спектроскопии, рентгеноструктурного анализа - для доказательства и фиксации структуры.

  7. И далее, далее, далее - главное по существу и конструктивно.

Показать полностью 3 1
Инженер Будущее Развитие Композитные материалы Химия Исследования Изобретения Инновации Физика Тестирование Российские ученые Видео Вертикальное видео Короткие видео Длиннопост
19
PNIPU
PNIPU
2 месяца назад

Ученые Пермского Политеха выяснили, в каких случаях стеклянные частицы улучшают свойства полимерных изделий⁠⁠

Ученые Пермского Политеха выяснили, в каких случаях стеклянные частицы улучшают свойства полимерных изделий ПНИПУ, 3D печать, Полимеры, Композитные материалы, Армирование, Стекло

Расположение образцов в камере для печати: b — изготовление образцов для испытаний на растяжение, изгиб, вязкость разрушения и сжатие; c — изготовление образцов для испытаний на ударную вязкость и усталость.

Полиамид 12 – один из ключевых материалов в 3D-печати, сочетающий прочность, гибкость, химическую стойкость и биосовместимость. Этот универсальный пластик используют в авиа- и машиностроении, а также в медицине для создания протезов и имплантатов. Однако недостаток полимерных материалов в их пористости и хрупкости, которые можно устранить, добавляя стеклянные волокна. Ученые Пермского Политеха провели масштабное исследование и выяснили, что правильный выбор формы стеклянных частиц и ориентации печати может кардинально изменить свойства конечного продукта и повысить прочность на 23-44%. Результаты помогут создавать более надежные композитные изделия с определенными характеристиками для высокотехнологичных отраслей.

Статья опубликована в «Международном журнале передовых производственных технологий», 2025. Исследование проводилось при поддержке Российского научного фонда (№ 22–79-10350).

Детали из полиамида 12 часто изготавливают методом селективного лазерного спекания – это технология 3D-печати, которая основана на соединении полимерного порошка лазером, за счет чего слой за слоем создается изделие любой формы. Таким способом можно получать сложные решетчатые структуры с минимальным весом и максимальной прочностью, что особенно востребовано в авиации, например, для обшивки салона самолета, деталей подшипников, корпусов БПЛА.

Такой полимер обладает высокой прочностью и хорошей устойчивостью к усталости, то есть способностью долго не разрушаться под нагрузками. Однако детали, изготовленные методом селективного лазерного спекания, могут быть хрупкими из-за внутренней пористости. Исправить это можно с помощью специальных армирующих элементов, которые добавляются в состав порошка для укрепления структуры. Сейчас в качестве такого модификатора активно рассматриваются стеклянные волокна, способные улучшить механические свойства будущей детали.

Ученые Пермского Политеха в ходе масштабного исследования выяснили, что на характеристики композитного изделия сильно влияет как форма стеклянных частиц, так и ориентация печати.

Политехники изготовили образцы из полиамида с добавлением стеклянных частиц в виде шариков и коротких волокон, используя горизонтальную и вертикальную ориентацию печати. После провели комплексные испытания (растяжение, изгиб, сжатие, ударную вязкость, вязкость разрушения и испытания на усталость) и сравнили полученные характеристики с показателями чистого полиамида без добавок.

– Эксперименты показали, что состав материала необходимо выбирать в зависимости от того, при каких нагрузках будет использоваться деталь. Так, применение стеклянных шариков немного снизило прочность образцов при испытаниях на разрыв и ударную вязкость. Чистый полиамид менее жесткий, но показал лучшую прочность в этих испытаниях. Образцы с неравномерным распределением коротких стеклянных волокон в полимере ухудшили большинство показателей, включая прочность и пластичность, – рассказывает Михаил Ташкинов, заведующий научно-исследовательской лабораторией «Механика биосовместимых материалов и устройств» ПНИПУ, кандидат физико-математических наук.

Политехники отмечают, что на свойства детали значительно влияет ориентация печати. Образцы, напечатанные горизонтально, оказались на 23-44% прочнее, чем вертикальные, из-за лучшего распределения нагрузки и меньшего количества слабых мест между слоями. Этот фактор важно учитывать при проектировании изделий и подготовке моделей к печати.

– С точки зрения промышленного применения выбор конкретного материала должен зависеть от точных условий эксплуатации детали, вида и величины предполагаемых нагрузок. Наше исследование показало, что для жестких конструкций его предпочтительнее укреплять стеклянными шариками. Например, в корпусах и оболочках приборов электроники, где важна высокая жесткость и стабильность размеров, а также в конструкционных компонентах дронов и аэрокосмической техники. А если в приоритете ударопрочность, лучшим решением станет чистый полиамид без наполнителей. Например, в съемных элементах и деталях, работающих в условиях износа и ударов, таких как протезы, – объясняет Илья Виндокуров, младший научный сотрудник научно-исследовательской лаборатории «Механика биосовместимых материалов и устройств» ПНИПУ.

Ученые Пермского Политеха выяснили, что небольшие изменения в составе материала и параметрах печати могут кардинально поменять свойства конечного продукта. Полученные результаты позволят создавать композитные детали с определенными характеристиками под конкретные задачи. Это открывает новые возможности для аддитивного производства, особенно в областях, где критичны точность и надежность.

Показать полностью
ПНИПУ 3D печать Полимеры Композитные материалы Армирование Стекло
0
user10563640
3 месяца назад

Схема получения нанокомпозита ПЛА/нано целлюлоза методом смешения в расплаве⁠⁠

Схема получения нанокомпозита ПЛА/нано целлюлоза методом смешения в расплаве Композитные материалы, Целлюлоза

Увлекательный мир создания нанокомпозита на основе полилактида (PLA) и наноцеллюлозы с использованием метода смешения в расплаве. Это как кулинарный рецепт для материаловедов: берём ингредиенты, нагреваем, перемешиваем — и вуаля, получаем новый материал с улучшенными свойствами!

Шаг 1: Подготовка компонентов

Сначала необходимо подготовить полилактид и наноцеллюлозу. PLA — это биополимер, получаемый из возобновляемых ресурсов, таких как кукурузный крахмал или сахарный тростник. Наноцеллюлоза, в свою очередь, представляет собой нанометровые волокна, извлечённые из целлюлозы, обладающие высокой прочностью и жёсткостью.

Шаг 2: Смешение в расплаве

Теперь начинается самое интересное. PLA нагревают выше его температуры плавления (обычно около 170–180 °C), чтобы перевести его в вязкотекучее состояние. Затем в расплавленный PLA добавляют наноцеллюлозу и тщательно перемешивают, чтобы добиться равномерного распределения наночастиц в полимерной матрице. Этот процесс часто осуществляется с помощью двухшнекового экструдера, который обеспечивает эффективное смешение компонентов. Важно контролировать условия процесса, чтобы избежать термической деградации PLA и агломерации наноцеллюлозы.

Шаг 3: Формование изделия

После получения однородного нанокомпозита его можно формовать в различные изделия с использованием методов экструзии, литья под давлением или 3D-печати. Добавление наноцеллюлозы улучшает механические свойства PLA, такие как прочность и жесткость, а также может повысить термостойкость материала.

Для наглядного представления процесса смешения в расплаве можно обратиться к схематическим изображениям, представленным в научных публикациях. Например, в статье "Recent development in polymer/montmorillonite clay mixed matrix membranes for gas separation: a short review" на ResearchGate представлена схема метода смешения в расплаве, которая иллюстрирует основные этапы процесса.

Кроме того, в работе "Melt Compounding of Poly(lactic acid)‐Based Composites: Blending..." обсуждаются различные аспекты процесса смешения в расплаве для композитов на основе PLA, что может быть полезно для более глубокого понимания технологии.

Таким образом, метод смешения в расплаве позволяет эффективно комбинировать PLA и наноцеллюлозу, создавая композиты с улучшенными характеристиками, пригодными для различных применений, от упаковки до биомедицинских устройств.

Показать полностью
[моё] Композитные материалы Целлюлоза
1
6
Asples
3 месяца назад

Высокие технологии сборки лодок в Корее⁠⁠

Не знаю какая Корея южная или северная, но технологический процесс поражает)

Ну в так-то, в целом, правильно "Саморез забитый молотком держится крепче чем гвоздь завинченный отверткой!"))

Ссылка на полное видео

Показать полностью 1
Изготовление Процесс Как это сделано Лодка Корабль Саморез Молоток Забил И так сойдет Нарушение Композитные материалы Видео Короткие видео YouTube
12
37
PNIPU
PNIPU
4 месяца назад
Наука | Научпоп

Исследование ученых Пермского Политеха поможет избежать дефектов в композитах на этапе производства⁠⁠

Исследование ученых Пермского Политеха поможет избежать дефектов в композитах на этапе производства ПНИПУ, Композитные материалы, Углепластик, Автоклав, Научпоп, Длиннопост

Образец исследуемого композитного материала

В последние годы активно изучаются и внедряются в промышленность толстостенные конструкции из композитных материалов. Это прочные и легкие изделия на основе полимера и непрерывных угле- или стекловолокон. Они нужны для работы в условиях высоких нагрузок, которым подвергаются, например, элементы самолетов, ракет и подводных лодок, лопасти ветрогенераторов, газовые баллоны и многое другое. Такие конструкции создают в автоклаве – большой печи, где слои материала из волокон и смолы выкладывают в заданную форму, а затем под высоким давлением и температурой отверждают в готовое изделие. Однако из-за большой толщины стенок материал может уплотняться неравномерно, что приводит к различным дефектам. Ученые Пермского Политеха установили оптимальные режимы для предварительного формования заготовки в автоклаве. Они обеспечат лучшее уплотнение материала и позволят контролировать толщину слоев, что повысит качество готового изделия.

Статья с результатами опубликована в журнале «Вестник ПНИПУ. Машиностроение, материаловедение», 2024 год. Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет 2030».

Для получения толстостенных конструкций из композита заранее подготавливают препреги – слои материала из волокон и смолы, которые выглядят как листы или рулоны. Их укладывают в форму, повторяющую контуры будущей детали, и отправляют в автоклав. Под высоким давлением и температурой смола затвердевает, а слои плотно соединяются друг с другом. В итоге получается прочная и легкая деталь, которая может выдерживать большие нагрузки.

Однако из-за большого количества слоев процесс изготовления толстостенных конструкций сложнее, чем тонкостенных. Требуется тщательный контроль температуры и давления, чтобы избежать дефектов в виде пористости и волнистости слоев. Уплотнить материал и снизить количество воздушных включений в структуре можно с помощью такой операции, как подформовка. Это этап, когда в процессе выкладки слоев изделию предварительно придается форма перед окончательным отверждением. Для этого препрег слегка прогревают и прижимают, чтобы смола лучше распределилась по заготовке и уплотнилась.

Хотя подформовка улучшает качество и характеристики изделий, важно определить, сколько раз ее нужно делать и при каких условиях – температуре, давлении и длительности. Это нужно для того, чтобы готовое изделие сохраняло свои свойства и оставалось надежным в работе. Ученые Пермского Политеха экспериментально установили оптимальные режимы подформовки, обеспечивающие необходимые физико-химические и механические характеристики композита.

Политехники использовали слоистые пластины углепластика. Подформовку проводили, нагревая образцы, выдерживая в течение 10 минут и охлаждая до 30 градусов. Затем определяли уплотнение материала, измеряя толщину пластин, и проводили его испытания на прочность.

– Мы установили, что материал максимально уплотняется (на 0,75 мм) при температуре 80 градусов. Это происходит из-за снижения вязкости смолы в составе препрега, что способствует ее выходу из объема заготовки и исключает появление воздушных прослоек между слоями. Близкие значения уплотнения (0,66 мм) достигнуты при температуре в 70 градусов. При работе автоклава под давлением в 5 атм средняя продолжительность составила 1 час 43 минуты, – рассказывает Артем Сыстеров, ведущий инженер НОЦ АКТ, аспирант кафедры механики композиционных материалов и конструкций ПНИПУ.

Таким образом, наиболее эффективный режим предварительного прогрева толстостенных заготовок – это 70-80 градусов в автоклаве при давлении 5 атм. Такие условия обеспечат более плотное прилегание слоев, что предотвратит образование дефектов, пористости и неравномерности материала.

Также политехники выяснили, если проводить дополнительные подформовки при высокой температуре, слои материала становятся плотнее. От 2 до 5 таких операций сохраняет прочность заготовки при последующей эксплуатации в высоких нагрузках (78-80 МПа). Но если препрег хранится 14 дней, а потом проводится его подформовка 5 раз и больше, его прочность снижается. Это говорит о том, что материал «стареет» и теряет свои свойства.

Проведенное исследование ученых ПНИПУ позволило установить оптимальные режимы формования заготовок, которые повысят скорость и качество изготовления промышленных толстостенных конструкций из композитных материалов.

Показать полностью 1
[моё] ПНИПУ Композитные материалы Углепластик Автоклав Научпоп Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии