Помню лет 10 назад попалась мне задачка реализовать визуализацию модели колебания тонкой пластинки с закрепленными концами а различными точками возбуждения с разным сигналом.
На тот момент ничего лучше чем сделать все на CPU не вышло. Но в целом вышла очень даже прикольная платформа где можно было налету создавать профиль пластины, точки, барьеры и прочее. Но все равно задача казалась очень прям серьезной. ИИ на тот момент еще не существовало. ))
Функции можно было задать вообще какие угодно.
Получилось тогда так себе.
Единственный косяк что максимальный размер пластины можно было использовать только 32*32 иначе начинался жуткий тупняк.
А сейчас на досуге решил вспомнить этот проект и поиграться с вычислительными шейдерами.
И каково же было удивление что вычислительные шейдеры на самом деле такая простая штука .. либо это опыт либо хз что.
Да и вообще шейдеры это сказка, хочешь сотню источников освещение? Да на здоровье.. )) даже и не напрягается.
Просто пересчитаем цвет с любым количеством источников.
Ну а самая вишенка это конечно работа этих шейдеров.
В итоге пластина 1024*1024. Уже детальнее видно волны. Любое количество источников колебаний, барьеров или закреплений пластины. И также любые параметры функций колебания и профилей контакта.
И главное что вообще ни грамма тормозни ... даже при том что запускается на обычном компе со встроенной видяхой.
И заняло буквально пару дней на все.. правильно говорят - опыт, как и половое бессилие, приходит с годами. ))
Дальше интересно сделать вариант где волны гуляют по поверхности сферы ..
⚡️ Microsoft объявила о планах улучшить DirectX, чтобы возможности API соответствовали новым веяниям в области рендеринга графики. Скоро в DirectX появится нейронный рендеринг.
🎫 Нейронный рендеринг — это стек технологий ИИ, которые повышают качество отображения текстур, света и отражений, также в процессе снижается вычислительная нагрузка на ГПУ. Мелкомягкие из Microsoft хотят разработать структуру с открытым исходным кодом, которую разработчики смогут легко встраивать в свои игры через API DirectX.
📊 За счет умножения матриц с векторами произвольного размера оптимизируются матрично-векторные операции, которые используются при тренировке ИИ. Таким образом ускоряется работа генераторов кадров, апскейлеров и других технологий на базе ИИ. Мелкомягкие сообщили, что кооперативные векторы используют тензорные ядра видеокарт RTX 5000.
🔻 Точная дата релиза нейронного рендеринга в DirectX пока неизвестна.
Когда я учился в 9 классе, а это был вроде 2003 год, начали заниматься программированием на информатике, хотя я начал изучать его чуть раньше. Нам объясняли, как на бейсике отрисовать точку, круг, квадрат, и прописав несколько координат, линиями нарисовать многоугольник в виде разных лодочек. Меня это так увлекло, ведь мы на алгебре как раз строили графики, а задав нужную функцию, вывести точки в виде графика, нет ничего проще. В общем первой моей программой был "решебник" для проверки верности моих построений графиков. Потом втянулся, нажал на кнопочку, нарисована ось координат с необходимым масштабом и штрих отметками, перерисовка при изменении масштабов окна и т.д. были, конечно проблемы с тормозами, ведь если точки рисовать достаточно плотно друг к другу, происходит эффект анимации рисования, а если точки редко, отрисовка быстрая, но приблизительная. В общем довел эту программу практически до уровня примитивного графического редактора, можно сказать даже некое подобие графического движка, способного выводить необходимые 2д модели, сохраняя их в файле и пользоваться ими в дальнейшем как спрайтами. Сделал на нем даже две игры, лабиринт, по которому бегает колобок, и пятнашки. Когда учитель информатики увидел мои работы, он конечно мне отлично поставил за будущие года, так как я там ничего нового больше не узнаю, но в то же время предложил заниматься со мной факультативно. Хоть он мне и сказал, что я изобрел велосипед, и все это уже реализовано в DX, но меня преисполняла гордость, что допер до этого сам. Тем не менее, я купил книжку по директу, и тут понеслось. Как же изменилось качество графики, в основном из за смены буферов. Затем разобрался с фотошопом и 3dsmax. Вуаля, и первая полноценная 3d игра, где все тот же лабиринт из рельс и вагонетки, в которой помимо стандартного прохождения, нужно еще переключать стрелки в нужном порядке, чтобы собирать золото. В общем игра не слишком захватывающая, но играл в нее чаще, чем в КС. Эх как же жаль что исходников не сохранилось.
Осторожно: Несмотря на кажущуюся сложность статьи о разработке целой 3D-игры с нуля, я постарался систематизировать и упростить материал так, чтобы понятно было любому заинтересованному читателю, даже если вы далеки от программирования в целом!
Статьи о разработке инди-игр — это всегда интересно. Но разработка чего-то абсолютно с нуля, без каких-либо движков или фреймворков — ещё интереснее! Почти всю свою жизнь, буквально с 13-14 лет меня тянет пилить какие-нибудь прикольные 3D-демки и игрушки. Ещё на первом курсе ПТУ я написал небольшую демку с 3D-вертолетиками по сети и идея запилить какие-нибудь прикольные леталки не покидала меня по сей день! Спустя 6 лет, в 22 года я собрался с силами и решил написать небольшую аркадную демку про баталии на самолетиках, да так, чтобы работало аж на видеокартах из 90-х — NVidia Riva 128 и 3DFX Voodoo 3! Интересно, как происходит процесс разработки игры с нуля — от первого «тридэ» треугольника, до работающей на реальном железе демки? Тогда добро пожаловать под кат!
❯ Мотивация
Друзья! Вижу, что вам очень заходит моя постоянная рубрика о том, как работали графические ускорители из 90-х «под капотом», где мы не только разбираем их архитектуру, но и пишем демки на их собственных графических API. Мы уже успели с вами рассмотреть 3Dfx Voodoo, S3 ViRGE и мобильный PowerVR MBX и, думаю, теперь пришло время рассмотреть инструменты для разработчиков игр под Windows из 90-х. Про «старый» OpenGL рассказывать смысла не вижу — до сих пор многие новички учатся по материалам с glBegin/glEnd и FFP (Fixed Function Pipeline), а спецификацию с описанием первой версии API можно найти прямо на сайте Khronos. Зато про «старый» DirectX информации в сети очень мало и большинство документации уже потёрли даже из MSDN, хотя в нём было много чего интересного!
Вероятно читатель спросит — зачем пилить что-то для компьютеров 90-х годов, если большинство таких машин (к сожалению) отправились на цветмет и «никто в своем уме» не будет ими пользоваться? Ну, ретро-компьютинг и программирование демок — это, во-первых, всегда интересно. Среди моих подписчиков довольно много ребят, которые ещё учатся в школе, а уже натаскали с барахолок Pentium III или Pentium IV и GeForce 4 MX440 и сидят, балдеют и играют в замечательные игрушки из нулевых на таких машинах с по настоящему трушным опытом, да и я сам таким был и остаюсь по сей день. Вон, мне даже dlinyj скидывал свои девайсы в личку, а я сидел и слюни пускал. Так что факт остаётся фактом — ретро-компьютинг становится всё более и более популярен — что не может не радовать!
А во-вторых — это челлендж для самого себя! Посмотреть на то, как делали игры «деды» и попытаться запилить что-то самому, не забыв об этом написать статью и снять интересное видео в попытке донести это как можно большему числу читателей и зрителей! Конечно сам DirectX6 в целом значительно проще DX12, но некоторые техники весьма заковыристые и для достижения оптимальной производительности приходится пользоваться хаками. Ну а почему именно леталки? Потому что, наверное, хотел бы когда-нибудь полетать :)
Игру я решил писать на C#. Кому-то решение может показаться странным, но я уже не раз говорил, что это мой любимый язык, а при определенной сноровке — программы на нем работают даже под Windows 98. В качестве основного API для игры я выбрал DirectX 6, который вышел 7 августа 1998 года — за 3 года до моего рождения :)
Перед тем как что-то начинать делать, нужно определиться с тем, что нам нужно для нашей 3D-игры:
Графический движок или рендерер, работающий на базе Direct3D. В его задачи входит отрисовка геометрии, работа с освещением и материалами, отсечение моделей, находящихся вне поле зрения глаз, генерация ландшафтов из карт высот и т. п. Собственно, в нашем конкретном случае это графическим движком назвать сложно — никакого полноценного графа (иерархической структуры, как в Unity) сцены нет, толковой анимации тоже, зато есть довольно продвинутая система материалов :)
Звуковой движок на базе DirectSound. Здесь всё по классике: программный 3D-звук с эффектами типа «виу» и «вжух» с загрузкой звуковых дорожек из wav-файлов. Никакого стриминга звука с кольцевыми буферами и ogg/mp3 здесь не нужно!
Подсистема ввода, которая представляет из себя «получить состояние кнопки на клавиатуре» и «получить позицию курсора» :)
Остальные модули — сюда входят алгоритмы расчёта коллизий, математическая библиотека для работы с векторами и матрицами, система игровых объектов и загрузчики ресурсов. Это весьма небольшие и легкие в реализации подсистемы, но писать про каждый отдельный пункт смысла не очень много, поскольку они так или иначе часть других систем.
Как известно, в самолёте всё зависит от винта! Ну, или в нашем случае, от 3D-движка — поэтому предлагаю рассмотреть архитектуру нашего рендерера и заложить первые кирпичики в нашу 3D-игру!
❯ Графический движок
Поскольку C# — управляемый язык и напрямую дёргать COM-интерфейсы формально не может, а готовых обёрток для DirectX 6 по понятным причинам нет, мне пришлось писать свою. Простыми словами, обёртка обеспечивает слой совместимости между нативными библиотеками, написанными на C++ и управляемым кодом, написанном на C#/VB и т.п. Благо в мире .NET есть такое замечательное, но увы, забытое расширение плюсов, как С++/CLI, которое позволяет прозрачно смешивать нативный код и «байткод» .NET, благодаря которому разработка пошла значительно быстрее.
Любой графический движок начинается с создания окна и инициализации контекста графического API (инициализации видеокарты, если простыми словами) для рисования в это самое окно. В случае Direct3D6 всё интереснее тем, что фактически здесь уже был свой аналог современного DXGI (DirectX Graphics Infrastructure — библиотека для управления видеокартами, мониторами в системе), который назывался DirectDraw. Изначально DDraw использовался для аппаратного ускорения графики на VGA 2D-акселеллераторах — тех самых S3 ViRGE и Oak Technology и предназначался в основном для операций блиттинга (копирования картинки в картинку), но в D3D ему выделили функции управления видеопамятью и поэтому они очень тесно связаны.
Инициализация начинается с создания так называемой первичной поверхности (которая будет отображаться на экран) и заднего буфера (в который будет рисоваться само изображение), или в терминологии современных API — Swap-chain.
Теперь у нас есть окно, куда можно что-нибудь нарисовать!
Но 3D мы пока рисовать не можем — ведь контекста D3D у нас всё ещё нет, благо создаётся он очень просто. Единственный момент: Z-буфер нужно создать перед созданием устройства, иначе работать он не будет.
// Attach Z-Buffer to backbuffer Guard(d3dSurface->AddAttachedSurface(zSurface)); Guard(d3d->CreateDevice(IID_IDirect3DHALDevice, surf, &device, 0));
Мы уже на полпути перед тем как нарисовать первый тридэ-треугольник: осталось лишь объявить структуру вершины и написать обёртки над… Begin/End! Да, в Direct3D когда-то тоже была концепция из OpenGL, а связана она с тем, что в видеокартах тех лет вершины передавались не буферами, а по одному, уже трансформированные. Подробнее об этом можно почитать в моей статье о S3 ViRGE:
public valuestruct Vertex { public: float X, Y, Z; float NX, NY, NZ; D3DCOLOR Diffuse; float U, V; };
...
Vertex[] v = new Vertex[3]; v[0] = new Vertex() { X = 0, Y = 0, Z = 0, U = 0, V = 0 }; v[1] = new Vertex() { X = 1, Y = 0, Z = 0, U = 1, V = 0 }; v[2] = new Vertex() { X = 1, Y = 1, Z = 0, U = 1, V = 1 };
И вот, у нас есть первый треугольник! Читатель может спросить — а где же здесь игра и причём здесь треугольники, мы же не на уроке геометрии… Дело в том, что вся 3D-графика в современных играх строится из треугольников. Любая моделька на экране — это набор из маленьких примитивов, которые в процессе рисования на экран подвергаются процессу трансформации — преобразованию из мировых координат (то есть абсолютной позиции в мире) сначала в координаты камеры (таким образом, при движении камеры, на самом деле двигаются объекты вокруг камеры), а затем и в экранные координаты, где происходит перспективное деление и каждый треугольник начинает выглядеть как трёхмерный…
Таким образом, из тысяч треугольников можно описать самые разные объекты — от трёхмерной модели моих любимых «жигулей», до персонажей.
Но если сейчас нарисовать самолетик, то он будет исключительно белым, без намёка на освещение или детали. А для его «раскрашивания» служат текстуры — специальные изображения, подогнанные под текстурные координаты геометрии, которые помогают дополнить образ 3D-моделей деталями: асфальт на дороге, трава на земле, дверная карты в жигулях…
И вот с текстурами ситуация в D3D6 не менее интересная и очень похожа на современные GAPI: нам необходимо сначала создать текстуру в системной памяти (ОЗУ) и только затем скопировать её в видеопамять. Причём форматов текстур не слишком много. Я выбрал RGB565 (16-битный), хотя есть поддержка и форматов со сжатием — тот-же S3TC.
bool hasMips = mipCount > 1; // If texture has more than 1 mipmap, then create surface as complex, if not - then as single-level.
А чтобы её использовать, нужно «сказать» об этом видеокарте с помощью биндинга текстуры к текстурному юниту. Те, у кого были в свое время 3dfx Voodoo, наверняка поймут, о чём я :)
Guard(device->SetTexture(stage, tex->texture));
И вот у нас уже есть треугольник с текстурой! Осталось лишь домножить его матрицы трансформации, перспективную матрицу…
Реализуем простенький загрузчик моделей из формата SMD (GoldSrc, Half-Life или CS1.6), который грузит статичные модельки без скиннинга, а также загрузчик текстур из bmp и вот — мы уже имеем 3D-модельку самолёта с текстурой.
for(int i = 0; i < smd.Triangles.Count; i++) { uint c = new Color(255, 255, 255, 255).GetRGBA();
for (int j = 0; j < 3; j++) vert[i * 3 + j] = new Vertex() { X = smd.Triangles[i].Verts[j].Position.X, Y = smd.Triangles[i].Verts[j].Position.Y, Z = smd.Triangles[i].Verts[j].Position.Z, U = smd.Triangles[i].Verts[j].UV.X, V = smd.Triangles[i].Verts[j].UV.Y, NX = smd.Triangles[i].Verts[j].Normal.X, NY = smd.Triangles[i].Verts[j].Normal.Y, NZ = smd.Triangles[i].Verts[j].Normal.Z, Diffuse = c }; }
Возможно в каких-то играх и не нужно небо, но в леталках — уж точно необходимо. И без учёта динамических облаков, здесь есть две популярные техники:
Возможно в каких-то играх и не нужно небо, но в леталках — уж точно необходимо. И без учёта динамических облаков, здесь есть две популярные техники:
Sky-sphere, которая заключается в том, что небо представляет из себя полусферу с наложенной поверх текстурой неба в специальном формате. Такую полусферу очень часто крутят вокруг своей оси по оси Y, создавая эффект плывущих облаков. И получается вполне себе симпатичное анимированное небо. Иные варианты включают в себя многослойные реализации, где крутится могут лишь облака, когда статичные элементы фона остаются на месте.
Skybox — здесь суть простая, вокруг камеры рисуется «коробка» с вывернутыми в обратную сторону треугольниками, на которых рисуется текстура одной из сторон панорамы с выключенной записью в Z-буфер. Получается не только симпатично, но ещё и быстрее Skysphere на слабом железе, правда скайбоксы обычно статичным. Скайбоксы можно найти почти везде: например, в Counter-Strike, Half-Life.
На скриншоте ниже можно увидеть пример скайбокса:
Я выбрал скайбоксы. Реализация — проще пареной репы:
Engine.Current.Graphics.DrawMesh(mesh, 0, 6, v, new Vector3(0, 0, 0), new Vector3(1, 1, 1), materials[1]); // Forward Engine.Current.Graphics.DrawMesh(mesh, 6, 12, v, new Vector3(0, 0, 0), new Vector3(1, 1, 1), materials[3]); // Right Engine.Current.Graphics.DrawMesh(mesh, 12, 18, v, new Vector3(0, 0, 0), new Vector3(1, 1, 1), materials[0]); // Back Engine.Current.Graphics.DrawMesh(mesh, 18, 24, v, new Vector3(0, 0, 0), new Vector3(1, 1, 1), materials[2]); // Left Engine.Current.Graphics.DrawMesh(mesh, 24, 30, v, new Vector3(0, 0, 0), new Vector3(1, 1, 1), materials[4]); // Left
Но летать в пустом мире неинтересно и для этого нам нужен хотя бы ландшафт, который называется Terrain. Концепция Terrain простая — у нас есть карта высот, каждый пиксель который описывает высоту той или иной точки.
Мы проходимся по всей картинке и строим сетку треугольников, где высота определяется именно соседними пикселями на этой самой карте высот. На практике это выглядит так:
// Transform vertices verts[vertOffset] = new DXSharp.D3D.Vertex() { X = baseX, Y = ((float)bmp.GetPixel(i, j).R / 255.0f) * YScale, Z = baseZ, U = 0, V = 1 * TextureScale, NY = 1 }; verts[vertOffset + 2] = new DXSharp.D3D.Vertex() { X = baseX, Y = ((float)bmp.GetPixel(i, j + 1).R / 255.0f) * YScale, Z = baseZ + XZScale, U = 0, V = 0, NY = 1 }; verts[vertOffset + 1] = new DXSharp.D3D.Vertex() { X = baseX + XZScale, Y = ((float)bmp.GetPixel(i + 1, j + 1).R / 255.0f) * YScale, Z = baseZ + XZScale, U = 1 * TextureScale, V = 0, NY = 1 }; verts[vertOffset + 3] = new DXSharp.D3D.Vertex() { X = baseX, Y = ((float)bmp.GetPixel(i, j).R / 255.0f) * YScale, Z = baseZ, U = 0, V = 1 * TextureScale, NY = 1 }; verts[vertOffset + 4] = new DXSharp.D3D.Vertex() { X = baseX + XZScale, Y = ((float)bmp.GetPixel(i + 1, j).R / 255.0f) * YScale, Z = baseZ, U = 1 * TextureScale, V = 1 * TextureScale, NY = 1 }; verts[vertOffset + 5] = new DXSharp.D3D.Vertex() { X = baseX + XZScale, Y = ((float)bmp.GetPixel(i + 1, j + 1).R / 255.0f) * YScale, Z = baseZ + XZScale, U = 1 * TextureScale, V = 0, NY = 1 };
vertOffset += 6; } }
А результат — такой! Это самый простой кейс с Terrain'ом: в реальных играх, где ландшафт достаточно большой, его обычно бьют на так называемые патчи и дальние участки ландшафта упрощают с помощью специальных алгоритмов. Таким образом построены ландшафтры, например, в TES Skyrim.
Но ландшафт выглядит слишком скучно — ни травы, ни деревьев, ни даже разных текстур! Одна трава — да что ж это за ландшафтр такой :) И здесь нам на помощь приходят т. н. комбайнеры — которые дают возможность наносить сразу несколько текстур за один проход отрисовки геометрии. Конкретно в данном случае я решил использовал альфа-канал в цвете вершины в качестве значения, определяющего какой текстурой красить тот или иной участок ландшафта. Визуализировать это можно так (где прозрачные участки — там должна быть вторая текстура):
Этот способ даёт возможность использовать всего лишь две текстуры за один проход, в современных играх используется сплат-маппинг, позволяющий использовать более 4х-текстур за один проход!
Но тем не менее, выглядит вполне прикольно. Однако текстуры вдали выглядят слишком грубо и отдают пикселями. Ретро-стайл скажете вы? Согласен, но фильтрация и мипмаппинг здесь необходимы! Мип-маппинг — это техника, которая делит большую текстуру на несколько небольших разного размера. Каждый размер называется mip-уровнем и в два раза меньше прошлого: таким образом, у текстуры 256x256 9 уровней: 256x256, 128x128, 64x64 и так до 1x1. Мой самопальный конвертер текстур в собственный формат заранее «запекает» все мип-уровни, дабы быстро грузить текстуры с медленных HDD, а линейная фильтрация с мипмаппингом позволяет сгладить текстуры вдали, дабы они не резали глаза:
Ну и давайте же посадим немного деревьев на наш ландшафт! Для этого я добавил псевдослучайное добавление деревьев и кустов при генерации геометрии ландшафта:
if (rand.Next(0, 32) % 8 == 0) foliageBatches.Add(new FoliagePlacement() { Mesh = foliage[rand.Next(0, foliage.Length)], Position = new Vector3(baseX, ((float)bmp.GetPixel(i, j).R / 255.0f) * YScale, baseZ) });
Упс, наши деревья — черные! А всё потому, что у них нет альфа-канала, благодаря которому видеокарта может отделить прозрачные пиксели текстуры от непрозрачных. Полноценный альфа-блендинг (полупрозрачность) здесь слишком дорогой, поэтому приходится использовать технику, называемую колоркеями (Color key). Техника очень схожая с Chromakey, благодаря которым вырезают фон из видео, но чуть попроще (тем, что цвет прозрачности фиксированный, без Threshold). У нас есть определенный цвет, который считается прозрачным и не используется во всей картинке. Нередко это Magenta, в моём случае — полностью чёрный:
Включаем колоркей и наслаждаемся прозрачными деревьями на фоне ландшафта!
Ой-ой, а FPS то успел просесть с 1.000 до 50 из-за большого количества DIP'ов (и не очень хорошей работе современных GPU с старыми гапи). Время оптимизаций! Пока что нам хватит обычного Frustum culling'а, также известного как «отсечение по пирамиде видимости». Суть алгоритма простая: из матрицы вида и проекции строятся 6 плоскостей, каждая из которых описывает одну из сторон системы координат: левая, правая, верхняя, нижняя, ближняя и дальняя. Таким образом, делая обычную проверку нахождения точки в World-space и одной из плоскостей, мы можем отсечь невидимую глазам геометрию и не тратить ресурсы GPU и CPU на отрисовку невидимой геометрии:
// Allocation-less publicbool IsPointInFrustum(float x, float y, float z) { foreach(Vector4 v in Planes) { if (v.X * x + v.Y * y + v.Z * z + v.W <= 0) return false; }
return true; }
publicbool IsSphereInFrustum(float x, float y, float z, float radius) { foreach (Vector4 v in Planes) { if (v.X * x + v.Y * y + v.Z * z + v.W <= -radius) return false; }
return true; }
Затем проверяем, находится ли сфера внутри каждой из 6 плоскостей и если нет, то не рисуем геометрию вообще:
if (mesh.Radius > 0 && !Camera.IsSphereVisible(position, mesh.Radius)) return;
С учётом всех оптимизацией, получаем 17-20 кадров на этом GPU что можно считать… весьма неплохим результатом, учитывая что всё ещё есть куда оптимизировать!
❯ Звук
Эта часть статьи будет без иллюстраций, поскольку звук нужно слушать :) Но тем не менее, детали реализации звуковой подсистемы в DirectX весьма интересны и значительно отличаются от современного подхода.
Инициализация контекста DSound начинается с создания primary-буфера, который выступает в роли микшера перед отправкой звука на аудио-карту. Создаётся он довольно легко:
BufferDescription desc = new BufferDescription(); desc.Flags = BufferFlags.PrimaryBuffer | BufferFlags.Control3D;
primaryBuffer = Context.CreateSoundBuffer(desc);
После этого, в самом простом случае (без стриминга звука) нам достаточно лишь выгрузить PCM-поток на аудио-карту и начать его играть:
И всё! Да, вот так легко. BufferFlags.Software заменяется на Hardware, если необходимо аппаратное ускорение.
❯ Ввод
Пожалуй, это самая простая часть нашей статьи :) Как я уже говорил ранее, никакого особого функционала от модуля обработки ввода не нужно, лишь получать состояние кнопок — и с этим справляется лишь один метод…
Ну что ж, основа готова, давайте перейдем к реализации самого геймплея!
❯ Пилим геймплей
Сначала нам нужно реализовать логику полёта нашего самолётика. В целом, в нашем конкретном кейсе всё просто — для поворотов используем углы Эйлера (лень было писать класс для кватерниона), считаем Forward-вектор (вектор, указывающий на направление прямо) и просто крутим повороты по оси X и Y в нужную сторону, прибавляя к позиции самолетика Forward вектор, умноженный на скорость полёта. Правда, с таким подходом есть некоторые проблемы: выполнить петлю не получится, поскольку Forward-вектор всегда смотрит именно прямо и не учитывает обратную направленность по оси X.
Мы с вами хотим, чтобы камера всегда следила за нашим самолётиком. Для этого нужно взять Forward-вектор объекта и умножить каждую его компоненту на дальность от источника камеры. Эдакая бомж-версия lookat, правда с кучей ограничений, как минимум с Gimbal lock (потерей одной из осей поворота), а чтобы камера казалась плавной и придавала динамичности игре — мы делаем EaseIn/EaseOut эффект путём неправильного использования формулы линейной интерполяции :)
Ну, летать мы с вами уже можем… да, сильно по аркадному, но всё же :) Пришло время реализовать каких-нибудь соперников, а именно вражеские самолёты! Вообще, реализация нормального ИИ на самолетах, тем более в симуляторах — задачка очень нетривиальная, поскольку боты будут либо читерить, используя не те рычаги, что использует игрок, либо тупить и играть будет не сильно интересно. Вон, что «Варгейминг», что «Гайдзины» крутые в этом плане — я б ниасилил нормальных ботов для мультиплеерного симулятора или даже аркады :))
Вычисляем угол между позицией самолетика соперника и позицией игрока и интерполируем текущий угол по оси Y: получается вполне плавно, правда в нормальных играх ещё и компенсируют эффект «плаванья» вокруг игрока по синусоиде. Для подъёма и спуска по вертикали просто берём абсолютную величину выше/ниже:
Наши боты будут читерить, причём жёстко. Они будут иметь значительно большую маневренность, нежели игрок, но при этом их скорость будет сильно медленнее игрока, дабы можно было их обогнать и стряхнуть с хвоста.
Ну что ж, демка у нас есть и в этот раз я подготовился получше, чем в статье про 3dfx Voodoo: я собрал целых два тестовых стенда и попросил у подписчиков потестировать демку на своих машинах с диковинным железом из 90-х и нулевых годов. Железо у нас такое:
Процессор: Celeron 600MHz Coppermine
ОЗУ: 192Mb SDRAM 133MHz
GPU: Asus GeForce 4 MX420
ОС: WinXP SP3
На Win98 я так и не смог нормально накатить драйвера на MSDC (Mass Storage Device Class — «флэшки»), поэтому «считерил» и поставил WinXP. Изначально я планировал ставить Win2000 — но там .NET 2.0 работает с косяками (при том что этот же самый .NET работает на Win98!).
❯ Тесты
Давайте же посмотрим, как демка идёт на трушном железе. Для наглядности, я решил записать видео.
Переходим к интегрированной графике, а именно к EEEPC 701 4G с Intel GMA 900 на борту! Те, кто знают что такое GMA, понимают насколько эти встройки не приспособлены для игр. Несмотря на наличие поддержки вторых шейдеров, из-за отсутствия аппаратного вершинного конвейера чип ничего не тянет. Но моя игрушка — исключение и она работает на удивление очень даже неплохо! 15-20 кадров точно есть и это при том что есть куда оптимизировать!
А дальше у нас идут тесты от подписчиков в Telegram-канале, которым я скинул билд и пригласил потестить демку на ретро-железе. Первый тест от читателя на ноутбуке с Pentium III и редкой встройкой Trident CyberBlade XP показал весьма неплохой результат — 15-20 кадров:
Дальше тот же читатель, имя которое он просил не раскрывать, потестил демку на ATI Rage M6 — очень и очень бодрый GPU, который выдает стабильные 20-25-30 кадров!
❯ Заключение
Вот такая демка, мини-игрушка у меня получилось. Да, весьма примитивненько, зато прикольно, запилено за пару дней и можно полетать на виртуальных самолетиках. Также у меня есть Telegram-канал, куда я публикую различные мысли связанные с подручным ремонтом, моддингом и программированием под гаджеты прошлых лет, а также публикую туда ссылки на новые статьи и видео! Найти исходный код демки вы можете на моём Github.
Понравилась статья? Пишите своё мнение в комментариях, я старался :)
Статья подготовлена при поддержке TimeWeb.Cloud. Подписывайтесь на меня и @Timeweb.Cloud, чтобы не пропускать новые статьи каждую неделю!
💎 Новый драйвер intel даёт 48% прироста производительности в играх — виновником прироста производительности в DirectX 11 стал драйвер 101.5444.
🎫 Видеокарты ARC Alchemist и встройка процессоров Intel Core Ultra получили значительный прирост в играх под DirectX 11. Самый большой прирост fps наблюдается в Lethal Company, Need For Speed Heat, Astoneer и Mass Effect Legendary Edition. Полный список всех затронутых тайтлов.
💭 Помимо этого intel исправили кучу багов из прошлых ревизий драйвера.
Дисклеймер: игра была написана как простенькая, но познавательная демка именно для PowerVR MBX и именно для Axim X51v. Именно поэтому здесь нет нормального Update-таймера, расчёта дельты времени, а игра прибита к константным временным отрезкам и величинам скорости!
Итак, как же игры подобного планы работают «под капотом»? По факту, обычно мы с вами никуда не едем: фоновые модели ландшафта и дороги просто скроллятся и телепортируются друг за другом, когда одна из частей уходят за экран, что создаёт эффект бесконечной дороги. И эта техника используется во многих играх! Что же касается машинок, от которых мы должны лавировать, то это не мы едем на них, это они едут на нас! По итогу создаётся эффект будто мы с вами куда-то едем и уворачиваемся от машинок, хотя на деле это не так!
Начинаем с реализации базовой вещи в архитектуре любой современной игры, а именно системы игровых объектов. В нашей игре нет необходимости в реализации сложного графа сцены с комплексной компонентной системой, или, например, ECS. Хватит классического линейного списка игровых объектов (который использовался, например, в Half-Life), по которому объект World проходится каждый кадр, вызывая необходимые функции для обновления состояния объекта и его отрисовки:
public abstractclass Entity { public Transform Transform;
foreach (Entity ent in entityRemovalList) Entities.Remove(ent);
entityRemovalList.Clear(); }
publicvoid Draw() { sky.Draw();
renderer.Draw();
foreach (Entity ent in Entities) ent.Draw(); }
Самым первым нашим объектом будет машинка игрока, которой можно будет управлять! Модельки я взял лоуполи со скетчфаба, вот ссылка на ВАЗ 21099 и VW Golf Mk2. Спасибо авторам моделей за их работу!
Наследуемся от Entity и реализуем абстрактные методы с логикой объекта. Здесь мы получаем состояние аппаратных кнопок влево и вправо, в зависимости от них вычисляем направление поворота машинки и, собственно, поворачиваем машинку путём сложения с координатой X вычисленного направления, помноженного на «скорость» поворота машинки. Для лучшего визуального эффекта, мы также плавно поворачиваем машинку эффектом а-ля EaseIn/EaseOut:
Теперь нам нужно, чтобы машинка где-то «ездила». Для этого мы моделируем в блендере примитивный кусок дороги с элементами ландшафта:
А затем реализуем примитивный рендерер фона, который будет скроллить два одинаковых seamless-куска уровня и как я уже говорил ранее, просто телепортировать их друг за другом, создавая эффект бесконечности.
public SectorRenderer() { road = Model.FromFile("road.mdl"); roadMaterial.Diffuse = Texture2D.FromFile("road.tex");
Где terrain.mdl — окружающий ландшафт, а road.mdl — собственно, сам меш дороги. Получаем вот такой эффект:
Артефакты на видео — следствие проблем с точностью float у MBX Lite в процессе клиппинга геометрии при ближней плоскости отсечения в 0.1f. Меняем на 1.0f и всё снова работает нормально :) Чуть изменяем проекцию, переместив камеру выше и наклонив на 45 градусов и игра уже похожа на Traffic Racer!
Переходим к реализации машин трафика. Модельки их машин будут загружаться при старте игры:
publicstaticvoid Preload() { PreloadedCars = new Model[1]; PreloadedMaterials = new Material[1];
LoadTrafficModel(0, "traffic1"); }
А сама их логика предельно проста. При спавне, машинка выбирает себе полосу, по которой будет ехать и рандомный множитель скорости, который вносит разнообразие в игру:
Переходим к обработке столкновений. Помним, что мы на этапе конвертации моделей посчитали Axis Aligned Bounding Box для каждой модели? В качестве алгоритма мы будем использовать классический AABB — или Rect vs rect:
public bool Intersects(BoundingBox box) { return (X < box.X + box.X2 && Y < box.Y + box.Y2 && Z < box.Z + box.Z2 && box.X < X + X2 && box.Y < Y + Y2 && box.Z < Z + Z2); }
Теперь для проверки столкновения между ними, нам надо посчитать абсолютный Bounding Box для каждого игрового объекта:
Затем итерируемся по списку всех игровых объектов в сцене, и если у нас есть машинка трафика, то проверяем на столкновение с машинкой игрока. Если столкнулись, то помечаем машинку игрока как разбитую и предлагаем игроку рестартнуть игру.
foreach (Entity ent in Game.Current.World.Entities) { if (ent is TrafficCar) { if (Player.Bounds.Intersects(((TrafficCar)ent).Bounds)) { // TODO: Damage logic Player.IsDestroyed = true; } } }
Уже что-то немного похожее на игру. Добавим конечное препятствие — необходимость рестарта при столкновении с другой машинкой и для демки пока-что хватит.
if (Game.Current.world.Player.IsDestroyed) { int measure = Engine.Current.Graphics.MeasureString(RestartString); Engine.Current.Graphics.DrawString("Press Return to restart", Engine.Current.Graphics.ViewWidth / 2 - (measure / 2), Engine.Current.Graphics.ViewHeight / 2, StatsColor); } }
Вот что у нас получилось:
Правда, что на МКАДе каждый вечер такое? Я просто не с МСК :)
❯ Заключение
Вот такой у нас получился материал про PowerVR MBX! С выходом iPhone, этот GPU дал толчок для появления красивых мобильных игр с уровнем графики, близким к полноценным домашним консолям… жаль, что золотая эра интересных, самодостаточных и бездонатных мобильных игр и закончилась во времена iPhone 5 :(
В остальном же, надеюсь материал был достаточно интересен и познавателен для всех моих читателей, даже тех, кто никогда не программировал игры! Был у вас Dell Axim X51v? Пишите в комментариях!
Исходный код демки и бинарники можно найти на моём гитхабе.
Материал написан при поддержке TimeWeb Cloud. Подписывайтесь на меня и @Timeweb.Cloud , чтобы не пропускать новые статьи каждую неделю! А ещё у меня есть своя телега, куда я публикую бэкстейдж статей и вовремя публикую ссылки на новый материал!
Понравился материал?
А ещё я собираю деньги на проект с уже настоящим, физическим ТАЗом и его электронным дооснащением бортовым компьютером "по самому дешману" своими руками! Уже собрано 50.000 рублей из планируемых 70.000 на машину, из них 45.000 моих личных сбережений и 5.000 рублей - помощь читателей, за что вам большое спасибо :)
Пожалуй, многие из вас помнят, какими были мобильные игры до и после выхода первого iPhone. В начале 2000-х годов, ещё до появления яблочного смартфона, игры для телефонов в основном были весьма интересными, но тем не менее, достаточно простенькими с точки зрения графики и реализации в целом. После запуска AppStore в 2008 году, на iPhone начали выходить самые разные красочные, невиданные раннее по уровню детализации и проработке 2D и 3D игры. Но появление таких игр — отнюдь не заслуга Apple, а относительной малоизвестной компании PowerVR (подразделение Imagination Tech), которая смогла разработать на базе видеочипа Dreamcast и внедрить один из первых действительно массовых мобильных 3D-ускорителей, имя которому — PowerVR MBX! Сейчас мы с вами привыкли, что почти любой дешевый смартфон может отрисовывать графику уровня PS3 в 1080p, а то и выше, но когда-то даже уровень PS2 был роскошью… Сегодня мы с вами: узнаем предысторию появления аппаратно-ускоренной 3D-графики на телефонах, рассмотрим такую фирменную фишку PowerVR, как тайловый рендеринг, а в практической части статьи нам поможет легендарный КПК Dell Axim X51v с MBX на борту, под который мы напишем 3D-игру «про жигули» с нуля! Интересно? Тогда добро пожаловать под кат!
❯ Мобильная 3D-графика. Начало
Пожалуй, 3D-графика на мобильных устройствах начала развиваться ещё с самого начала 2000-х годов. К тому моменту, как мобильные телефоны научились запускать сторонние Java-приложения, практически сразу же появился прибыльный рынок мобильных игр. Ещё до появления поддержки jar-приложений, люди ставили рекорды в «Змейке» на телефонах Nokia, таскали ящики в «Строителе» на Siemens и играли в другие предустановленные игры на девайсах других брендов, поэтому было очевидно, что игры на мобильных телефонах рано или поздно смогут занять немалую часть сегмента портативных игровых устройств.
Именно появление J2ME дало тот самый толчок для развития мобильного гейминга. Производители телефонов активно развивали и дорабатывали мобильную платформу, добавляя в неё различные API-расширения — например, активацию приложений через СМС и доступ в WAP-интернет. Сама платформа J2ME была достаточно простой для изучения и имела низкий порог вхождения не только для людей, имевших какой-то опыт программирования, но даже для совсем новичков, которые никогда не писали код и тем более игр! Благодаря этому, появились сотни игр, многие из которых до сих пор помнят и любят: это и легендарный «мячик» Bounce, и «зайчик с морковками» Bobby Carrot, и весьма крутой Gish, а также множество различных платформеров по известным фильмам и «большим» играм!
В 2003 году появился Nokia N-Gage — первый массовый телефон, ориентированный именно на мобильный гейминг, который поддерживал не только Java-игры, но и собственные Symbian-игры с достаточно крутой 3D-графикой! Примерно в том же 2003 году, для платформы Java вышло сразу два API-расширения, которые добавляли поддержку симпатичной 3D-графики даже в самые простенькие и бюджетные телефоны: Mobile 3D Graphics (M3G, была почти везде) и Mascot Capsule (эта платформа была только на Sony Ericsson и Motorola). Именно благодаря этим API, мы с вами увидели такие легендарные игры, как V-Rally, Galaxy on Fire, Deep3D и многие другие! Но тем не менее, эти API были относительно медленными из-за программной растеризации на процессоре без отдельного 3D-ускорителя и весьма ограниченными в функционале. Ближайший пример по функционалу — уровень софтрендера первой кваки на первом Pentium! Кстати, про 3D на мобильных телефонах я писал отдельную статью, там в практической части мы пишем 3D-бродилку для Sony Ericsson!
Но помимо кнопочных телефонов, существовал сегмент High-end мультимедийных устройств, которые предоставляли гораздо больший функционал и производительность за немалые деньги. И речь, конечно же, о КПК! Девайсы, работавшие на базе шустрых процессоров Intel PXA и Samsung S3C с Windows Mobile на борту были заметно более перспективными для игр… но как-то не задалось из-за отсутствия нормальных каналов для распространения. Но тем не менее, Intel (иронично, но один из самых больших производителей ARM-чипсетов для КПК в те годы), которая уже занималась развитием десктопной графики GMA и PowerVR активно работали в этой сфере и результатом стало появление видеоускорителя 2700G, который представлял из себя не только 3D GPU PowerVR MBX Lite, но и аппаратный декодер видео, позволявший смотреть видео в высоком качестве! MBX Lite позволял запустить даже Quake 3 в 640x480 (!), пусть и в 10-15 FPS… Ещё за 5 лет до этого, далеко не все десктопные видеокарты могли выдать больше 30 FPS в 800x600!
Конечно в 2004 году уже вышел PSP, выставивший новую планку уровня 3D-графики для портативного гейминга, однако для смартфонов и КПК, уровень графики, разрешение и производительность 3D-игр на MBX Lite был просто немыслимым! Одним из самых легендарных и популярных устройств с 2700G, которое вы можете приобрести достаточно дешево и сейчас, был КПК Dell Axim X51v, флагманская модель с VGA-дисплеем тех лет. Но нельзя сказать, что только PowerVR работала в этом направлении. Параллельно NVidia выпустили GoForce, крайне редко попадающийся в «полноценном» виде (NVidia предлагала дешевле лицензировать только видео-декодер с отключением 3D-части, как это было в Toshiba Portege G900) и ATI Imageon, который чаще всего можно встретить в виде Adreno на ранних Android-чипсетах Qualcomm (Adreno — анаграмма Radeon :)).
Тем не менее, решение PowerVR было действительно массовым: компания не предлагала отдельный чип (что обычно было дороже), как конкуренты, а лицензировала другим компаниям уже готовые IP-ядра, которые производители чипов могли синтезировать и использовать в своих собственных чипсетах, или, сопроцессорах, как в случае с 2700G. Благодаря этому, MBX появился в чипсете TI OMAP 2430, использовавшийся в легендарных Nokia N93i и Nokia N95, Samsung INNOV8, Asus Lamborghini, Nokia E90 и некоторых других. Кроме того, PowerVR MBX использовался в процессоре Samsung S5L8900, судя по всему, разработанный для iPhone 2G и 3G! Благодаря этому, его можно считать одним из первых массовых 3D GPU в телефонах!
Одна из игр для iPhone 2G и N95 — Assasins Creed
И Asphalt 5!
Весьма симпатично, согласитесь?
❯ Под капотом
Но MBX, конечно же, не появился «из ниоткуда» и был основан на более ранних разработках компании Imagination Tech, а именно GPU из полноценной домашней консоли SEGA Dreamcast — PowerVR CLX2, который в свою очередь был основан на ранних десктопных GPU PowerVR из середины-конца 90-х годов. Основная фишка PowerVR была в использовании так называемой техники отложного тайлового рендеринга (TBDR), которая, в отличии от классической растеризации и сортировки с помощью Z-буфера (или ручной сортировки треугольников) всех примитивов «в лоб» (методика, используемая в PSP, PS2 и большинстве видеокарт 2000-х годов), сначала ждёт от программы списка всех рисуемых треугольников в кадре, разбивает весь экран на тайлы (небольшие прямоугольные области), которые содержат в себе информацию о пересекающихся треугольниках, а затем процессом, несколько схожим с рейтрейсингом, определяет, какой из пикселей треугольника ближе всего находится к камере наблюдателя. Таким образом, мы избавляемся от необходимости сортировки геометрии с помощью Z-буфера (который сам по себе занимает достаточно много, по меркам тех лет, памяти и страдает от проблем точности и Z-fighting'а), а также такой метод позволяет реализовать более дешевый альфа-блендинг без ручной сортировки полупрозрачных примитивов и имеет ещё одну приятную фишку — «бесплатный» Occlusion Query, который можно использовать для реализации продвинутых техник отсечения невидимой глазу геометрии.
Производительность PowerVR MBX была весьма достойной для своих лет: при частоте работы в 200МГц, видеочип обеспечивал филлрейт в 100Мп, обрабатывал до 1млн треугольников в секунду. Нативным графическим API MBX был OpenGL ES 1.1 — специальная урезанная версия OpenGL для встраиваемых устройств, из которой выбросили все ненужное и которая заточена не только под floating-point, но и под fixed-point арифметику. В остальном, особо никаких отличий для программиста по сравнению с обычными GPU не было, можно было без проблем портировать уже существующие приложения для десктопого OpenGL для мобильные девайсы, чем и пользовались энтузиасты при портировании Quake 3 на Nokia E90, КПК и другие девайсы. Также, PowerVR MBX поддерживал D3DM — графический API Windows Mobile, о котором мы поговорим позднее.
Однако PowerVR MBX был GPU с фиксированным конвейером (FFP), а не программируемым, как принято в современных 3D-ускорителях. Что-же такое программируемый и фиксированный конвейер? Давайте разберемся:
Фиксированный конвейер: для того, чтобы задать визуальную составляющую рисуемой геометрии, программист оперирует набором заранее определенных при проектировании видеочипа параметров, которые позволяют управлять внешним видом растеризуемых примитивов. Например, для реализации света, программист задает параметры каждого из 8 источников света влияющих на рисуемый объект. Если программисту необходимо наложить несколько текстур за один проход (например, для реализации плавных переходов текстур на ландшафте или нанесения карты отражений на модель), он оперировал комбайнерами, которые позволяли задавать для каждого сэмплера параметры наложения. Такой подход использовался на десктопных GPU эпохи до GeForce 3 (т. е. примерно до 2000 года), до PS3 на Sony PlayStation (Xbox сразу вышел с GeForce 3) и до PSP включительно на портативках. Очевидно, что такой подход сильно ограничивает программиста в том, как будет выглядеть его игра на той или иной видеокарте.
Программируемый конвейер: в программируемом подходе, для управления визуальной составляющей программист пишет небольшие программы для видеокарты, называемые шейдерами. Всего есть два базовых (в современных GPU их больше) этапа программируемого конвейера: первый из них — вершинный шейдер, отвечающий за трансформацию геометрии (перевод из мировой системы координат в экранную) и, например, анимацию. Трансформированные вершины отправляются в следующий этап конвейера — растеризацию, где выполняется уже пиксельный шейдер, который определяет цвет пикселя (или более корректно — фрагмента в терминологии 3D графики) — т.е например, окрас объекта в определенной цвет, текстуру (или несколько текстур), рассчитывает попиксельное освещение, накладывает тени и т. д. Кроме того, такой подход позволяет реализовать сложные техники типа Ambient Occlusion, SSR, а также пост-эффекты (например блюр/блум, правда эти два можно «сэмулировать» и на FFP при определенной сноровке).
К 2007 году, Khronos выпустили спецификацию второй версии OpenGL ES, которая добавляла в мобильные устройства поддержку программируемого конвейера и шейдеров. Таким образом, мобильные GPU всё ближе приближались к уровню консолей и могли выдавать вполне годную графику, близкую к консолям. Даже была когда-то такая консоль, как Zeebo, которая работала на базе смартфонного чипсета Qualcomm с графикой ATI Imageon (!). PowerVR уже в 2009 выпустила серию SGX, которая также использовалась в iPhone, iPad, многих Android-смартфонах и планшетах, а также PS Vita!
Modern Combat 3 на iPad
Но статья с пересказом фишек PowerVR MBX была бы не особо интересной без практической части с написанием 3D-игры под этот GPU с нуля! Поэтому предлагаю посмотреть на нашего сегодняшнего гостя, легендарный флагманский КПК Dell Axim X51v из далекого 2005 года! Для тех лет, это настоящий «жир»:
Его мне подарил мой читатель Сергей с Хабра, за что ему огромное спасибо! Девайс был в полной комплектации, даже с флэшкой и усиленной АКБ, которая до сих пор неплохо держит заряд, однако у него не работал тачскрин. Если вам интересен только процесс программирования игры, а не аппаратного ремонта, то листайте ниже сразу до следующего абзаца :)
❯ Практическая часть: ремонтируем КПК
По факту, девайс полностью работал, однако в некоторые моменты времени не откликался на кнопки и тачскрин, и по всем симптомам это напоминало дребезг кнопок. При этом тачскрин сам по себе реагировал нормально во всех местах, что, фактически, исключало вероятность его поломки (хотя резистивные тач-панели сами по себе не особо надежные, в отличии от емкостных тачскринов). Дело было вот в чём: во многих КПК тех лет был отдельный аппаратный переключатель блокировки клавиатуры и тачскрина, который можно было использовать при просмотре фильмов. Однако на моем девайсе он был слишком разболтанным…
Разбирается КПК несложно: выкручиваем 4 винта и снимаем переднюю часть корпуса. На всякий случай я прочистил грязь между тачем и верхней частью корпуса — она тоже бывает влияет на ложные нажатия и чувствительность тачскрина:
А вот и виновник наших проблем: рычажок переключателя был отломан, но все еще находится в положении «разблокирован». Даже если в выжать в упор — он все равно не работал. Ну что ж, фен в руки, сдуваем переключатель и ставим вот такую перемычку (на фото флюс ещё не отмыт):
Включаем девайс и смотрим — теперь всё работает! Вот такой простой и быстрый ремонт Axim'а. КПК мне сразу очень понравился, я и ранее знал о его легендарности, но теперь узнал и о том, что он очень круто спроектирован и собран! Кстати, есть смысл сразу сдуть концевой выключатель, который прижимает задняя крышка и заменить на перемычку. GPU не очень хорошо работает на кастомных прошивок, на которую прошиты многие Axim X51v. Поэтому есть смысл прошить сток: качаем прошивку (Файл отката), закидываем на SD-карту и ребутим девайс нажатием клавиш Wi-Fi + включение + Reset. После этого, девайс пойдет прошиваться.
Теперь девайс чистый, как с завода! Можно приступить к написанию небольшой демки-игрушки, которая сможет продемонстрировать нам перспективы нашего КПК в 3D!
❯ Практическая часть: подготовка
Изначально, в практической части статьи должна была участвовать не менее легендарная Nokia N95. Однако вот незадача: несмотря на то, что под Symbian сохранился SDK (который работает нормально только под Windows XP), на устройствах с системой старше 9.x необходимо взламывать installserver, дабы иметь возможность ставить хоумбрю программы (к которым относится и наша игра) и отладчик TRK.
И хотя свой девайс я пропатчил, дебаггер нормально поднять мне так и не удалось. Я смог проинициализировать контекст GLES, запилить примитивный рендерер с загрузкой ассетов из памяти устройства но потом решил перевести проект на WinMobile… Проблем с разработкой под Symbian много: если приложение крашится — то оно просто закрывается, без сообщений и логов. Добавьте к этому то, что в Symbian вообще нет исключений и не всегда можно записать ошибки в лог и отладка превращается в ужас. Ситуацию исправляет Qt, который работает на N95, но в котором нет поддержки GLES (по крайней мере, в виде обычного QOpenGL, хотя возможность юзать API системы из Qt есть и дебаггер там работает нормально, так что не всё потеряно). Если вы когда-то что-то пилили под Symbian, особенно в Carbide — пишите свой опыт в комментариях, интересно почитать :)
WinMobile не менее интересен тем, что в нём поддерживается сразу два графических API: классический OpenGLES в профиле Common Lite (только fixed-point арифметика) и мобильная версия Direct3D — D3DM.dll, которая предоставляет API очень похожее на DX9, но без поддержки шейдеров. Что не менее приятно — есть официальные биндинги от Microsoft к D3DM в .NET Compact Framework, что позволяет легко писать 3D-игры под WM на C#/VB.NET. Поскольку WinMobile — достаточно открытая для пользователя система, хватит лишь накатить VS2005/2008 на машину с WinXP/WinVista/Win7/Win8 и сразу начать разрабатывать под неё приложения, никаких проблем с отладкой и запуском приложений тут нет. На Win10/Win11 совместимость с WM5 поломали :(
Создаём приложение для смарт-устройств, выбираем в качестве целевой платформы WM5-устройство (эмулятор будет слишком медленным для наших целей, он даже для 2D-игр не подойдет) и, наконец-то, приступаем к написанию игры!
Что же за игра у нас будет? Я решил сделать эдакое 3D-переосмысление популярного в прошлом бесконечного раннера из «тетриса», где мы едем на машинке F1 и обгоняем другие машины, стараясь в них не врезаться. Основной целью является набрать как можно больше очков. Подобные игры достаточно популярны на мобильных девайсах и сейчас: вспомнить хотя-бы Highway Traffic, однако мой вариант будет весьма колоритным: ведь в моей демке мы будем кататься на ТАЗе 21099 и уворачиваться от гнилых «вторых гольфов». Ну а почему бы и нет, я просто очень люблю старые гнилые жигули и это не первый мой проект про машины этого производителя :)
❯ Практическая часть: «движок»
Как и у настоящей машины, у каждой игры должен быть собственный движок! Однако в случае конкретно нашей игры, это скорее небольшой фреймворк, который предоставляет ровно тот функционал, который нужен игре без каких либо излишеств. Необходимо изначально распланировать требования для будущего фреймворка, дабы написание игры не скатилось в процесс, известный в узких кругах как «движкописание» :)
Рендерер: с графической точки зрения, фреймворк должен реализовывать весьма небольшой функционал. Загружать геометрию и текстуры из файлов в специально-подготовленном формате, реализовывать концепцию камеры, отрисовывать статическую геометрию, а также спрайты и текст, реализовывать примитивную систему материалов, которая позволяет наносить на геометрию текстуры, красить их в определенный цвет и управлять повершинным освещением, а также наносить на геометрию отражения с помощью специально подготовленных enviornment-текстур. Кроме того, рендерер должен уметь рисовать симпатичное анимированное небо в виде полусферы.
Звук: воспроизведение wav-звуков и музыки из файлов. Да и всё пожалуй — что ещё нужно от звуковой подсистемы? :) Стерео ведь нет, поэтому и 3D-звук не нужен.
Ввод: обработка нажатий на тачскрин и аппаратные кнопки устройства, маппинг кейкодов в виртуальный «геймпад». GUI-подсистему тоже частично можно отнести именно сюда!
Физика: AABB и Sphere vs Sphere столкновения. Никакого полноценного солвера тут и не нужно :)
Начинаем, пожалуй, с реализации рендерера. Сначала нам необходимо создать окно и контекст D3DM. Процесс практически идентичен D3D8 и D3D9: передаём информацию о нужном адаптере (видеочипе) и заполняем структуру PresentationParameters, однако есть важные нюансы: аппаратный FSAA лучше всего отключить (MultisampleQuality), а также передавайте точный размер окна, в которое собираетесь рендерить изображение, иначе система начнёт софтварно (!) скейлить рендертаргет до размера окна каждый кадр, что, как сами понимаете, крайне медленно.
Из форматов Depth-Stencil форматов поддерживается D16, D24S8 и D32. Желательно использовать D16 (несмотря на тайловую архитектуру, насколько мне известно, в MBX все равно есть fallback до классического рендеринга при некоторых условиях). Практически на всех КПК и коммуникаторах использовался 16-битный цвет, т.е RGB565, но можно указать Unknown — тогда GAPI подцепит тот формат пикселя, что используется в остальной системе.
Переходим сразу же к рисованию геометрии! Для начала рендеринга, нам необходимо подготовить состояние контекста: посчитать и установить матрицы вида (т. е. камеры) и проекции для трансформации геометрии, задать рендерстейты (список состояний, например нужно ли рисовать модельку с освещением, или нет), очистить экран и Z-буфер и установить параметры фильтрации текстур. Перспективная коррекция текстур — достаточно тяжелая операция и использовать её стоит лишь при необходимости:
public void EndScene() { device.EndScene(); device.Present();
System.Threading.Thread.Sleep(16); }
Чтобы какую-то модельку нарисовать, нам нужно сначала её загрузить! Для возможности напрямую прочитать треугольники из файла и сразу записать их в вершинный буфер, я написал небольшой конвертер из формата SMD (GoldSrc) в собственный, очень простой и легковесный формат, который состоит из позиции вершины и её текстурных координат:
foreach (SmdTriangle triangle in mesh.Triangles) { for (int i = 0; i < 3; i++) { writer.Write(FloatToFixedPoint(triangle.Verts[i].Position.X)); writer.Write(FloatToFixedPoint(triangle.Verts[i].Position.Y)); writer.Write(FloatToFixedPoint(triangle.Verts[i].Position.Z));
Обратите внимание, PowerVR MBX оперирует fixed-point арифметикой! D3DM, конечно, может автоматически преобразовывать float-координаты вершин в числа с фиксированной точкой, вот только реализовано это криво и косо: драйвер будет конвертировать все вершины в fixed-point каждый вызов отрисовки, вместо того, чтобы один раз преобразовать их после Unlock'а вершинного буфера. Теперь представьте, насколько это тормозно для хоть сколь-либо комплексной модели :)
При этом загрузчик модели при таком подходе будет очень простым и будет работать шустро даже на таком слабеньком железе:
public Model(string debugName, Stream strm) { BinaryReader reader = new BinaryReader(strm);
int hdr = reader.ReadInt32(); int numVerts = reader.ReadInt32(); int vertSize = 20;
Переходим к текстурам. Грузить напрямую png/jpg на КПК слишком долго, поэтому их я тоже перегоняю в собственный примитивный формат, который состоит из описания ширины/высоты, а также формата текстуры и собственно, самих пикселей. На данный момент поддерживаются только RGB565 текстуры — с ними MBX работает лучше всего:
public sealedclass TextureConverter { publicconstint Header = 0x1234;
Загрузчик тоже получился примитивным и шустрым донельзя, пусть и без какой либо компрессии. PowerVR MBX поддерживает собственный формат компрессии — PVRTC:
BinaryReader reader = new BinaryReader(strm);
int hdr = reader.ReadInt32(); int fmt = reader.ReadInt32();
Handle = new Texture(Engine.Current.Graphics.device, Width, Height, 1, Usage.Lockable, Format.R5G6B5, Pool.VideoMemory);
int pitch; GraphicsStream gs = Handle.LockRectangle(0, LockFlags.None, out pitch); gs.Write(data, 0, data.Length); Handle.UnlockRectangle(0);
strm.Close();
Переходим, наконец, к фактическому рисованию модели! Для этого мы строим мировую матрицу для трансформации нашей модели, а также задаем вершинный буфер для, собственно, вершинного конвейера и посылаем видеочипу команду отрисовки. ZBufferWriteEnable нужен для отрисовки геометрии без записи в Z-буфер, что можно использовать, например, для реализации скайбоксов:
public void DrawModel(Model model, Transform transform, Material material) { Matrix matrix = Matrix.RotationY(transform.Rotation.Y * MathUtils.DegToRad) * Matrix.Translation(transform.Position); device.SetTransform(TransformType.World, matrix);
void Start() { model = Model.FromFile("model.mdl");
mat = new Material(); mat.Diffuse = Texture2D.FromFile("test.tex"); }
void Update() { t = new Transform(); t.Position.Z = 150; t.Rotation.Y += 0.1f;
graphics.DrawModel(model, t, mat); }
Результат: у нас есть крутящийся кубик или любая другая произвольная 3D-модель!
Переходим к обработке ввода. Тут ничего сложного нет, ловим события KeyUp/KeyDown формы и назначаем виртуальным кнопкам их состояние.
public Input(Form parentForm) { keyState = newbool[(int)GamepadKey.Count];
parentForm.KeyPreview = true;
parentForm.KeyDown += new KeyEventHandler(OnKeyDown); parentForm.KeyUp += new KeyEventHandler(OnKeyUp); }
private GamepadKey ResolveKeyCode(Keys key) { GamepadKey k = GamepadKey.Count;
switch (key) { case Keys.Left: k = GamepadKey.Left; break; case Keys.Right: k = GamepadKey.Right; break; case Keys.Up: k = GamepadKey.Up; break; case Keys.Down: k = GamepadKey.Down; break; case Keys.Return: k = GamepadKey.OK; break; }
Теперь мы сможем управлять нашей машинкой в игре (которой пока ещё нет). Самая-самая основа для реализации игры подобного плана у нас есть, пора переходить к геймплею!