Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
Грибные блоки - красочная головоломка, в которой вам предстоит передвигать блоки и заполнять ряды, чтобы собирать грибочки в корзину! Попробуйте продержаться как можно дольше!

Грибные блоки

Головоломки, Расслабляющая, Пазлы

Играть

Топ прошлой недели

  • Rahlkan Rahlkan 1 пост
  • Tannhauser9 Tannhauser9 4 поста
  • alex.carrier alex.carrier 5 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
8
EofruPikabu
EofruPikabu
7 дней назад
Край Будущего

Сканирующая туннельная микроскопия выявляет подповерхностную атомную структуру⁠⁠

Сканирующая туннельная микроскопия выявляет подповерхностную атомную структуру Наука, Наноматериалы, Нанотехнологии, Наночастицы

Слева показана волновая функция магнитного состояния, проникающая через графен к железу, куда туннелируют электроны из магнитного зонда. Справа — два микроскопических изображения: контраст укладки слоев и карта локальной спиновой поляризации.

Учёные из Мюнстерского университета в Германии разработали новый способ изучения свойств материалов на атомном уровне с помощью сканирующей туннельной микроскопии (СТМ). Обычно этот метод позволяет рассматривать только самый верхний слой материала, но теперь исследователи смогли увидеть и свойства, скрытые под поверхностью.

Команда под руководством профессора Аники Шленхофф и доктора Мацей Базарника изучала тонкий слой железа, покрытый слоем графена — очень тонкой плёнкой из углерода. Они использовали особый вариант СТМ, который позволяет «заглянуть» глубже, благодаря изучению электронных состояний, находящихся не только на поверхности, но и чуть выше неё.

Эти электронные состояния, взаимодействуя с железом под графеном, сами приобретают магнитные свойства. Благодаря этому учёные смогли увидеть, как ведёт себя магнитный слой железа под графеном, а также изучить структуру и расположение атомов в обоих слоях с очень высокой точностью — вплоть до масштаба отдельных атомов.

Кроме того, новый метод помог понять, как именно атомы углерода в графене расположены относительно атомов железа под ним. Оказалось, что их положение меняется в зависимости от того, как слои уложены друг на друга. Раньше такие различия было невозможно увидеть обычной микроскопией.

Таким образом, новая техника позволяет одновременно исследовать и верхний слой материала, и скрытые под ним слои, раскрывая их структурные, электронные и магнитные свойства. Это открывает новые возможности для изучения сложных многослойных материалов и их взаимодействий.

Показать полностью
Наука Наноматериалы Нанотехнологии Наночастицы
1
8
EofruPikabu
EofruPikabu
29 дней назад
Край Будущего

Исследователи обнаружили, что нанодомены являются ключом к созданию солнечных элементов следующего поколения!⁠⁠

Исследователи обнаружили, что нанодомены являются ключом к созданию солнечных элементов следующего поколения! Наука, Энергия, Ученые, Нанотехнологии, Наноматериалы, Научпоп

Главный исследователь Сэм Стрэнкс.

Новое исследование, опубликованное в журнале Nature Nanotechnology, раскрывает роль динамических нанодоменов в перовскитах на основе галогенида свинца — материалов, перспективных для солнечных элементов. Исследователи из Департамента химической инженерии и биотехнологии (CEB) показали, что поведение этих микроскопических структур влияет на эффективность и стабильность перовскитовых солнечных элементов.

Работа проводилась под руководством Милоша Дубаджича и профессора Сэма Стрэнкса в сотрудничестве с Имперским колледжем Лондона, UNSW, Университетом штата Колорадо, ANSTO и синхротронными центрами Австралии, Великобритании и Германии.

Понимание динамики нанодоменов позволит точнее настраивать свойства перовскитов, повышая производительность и долговечность солнечных элементов. Ранее изменчивость этих структур оставалась недостаточно изученной, а теперь открываются возможности для полного раскрытия потенциала перовскитов.

Милош Дубаджич отметил: «Управляя поведением нанодоменов, мы можем улучшить работу солнечных элементов и других оптоэлектронных устройств, расширяя границы эффективности преобразования энергии». Профессор Сэм Стрэнкс добавил: «Раскрывая секреты этих нанодоменов, мы ускоряем развитие перовскитовых солнечных технологий и делаем их более жизнеспособным решением для перехода к возобновляемым источникам энергии».

Исследование является частью более широкой работы по созданию эффективных и устойчивых энергетических решений с помощью материаловедения, направленных на решение глобальных задач в области возобновляемой энергии.

Показать полностью
Наука Энергия Ученые Нанотехнологии Наноматериалы Научпоп
1
4
EofruPikabu
EofruPikabu
1 месяц назад
Край Будущего

Новый подход к созданию эффективных одно- и двухатомных катализаторов на основе MoS!⁠⁠

Новый подход к созданию эффективных одно- и двухатомных катализаторов на основе MoS! Наука, Ученые, Нанотехнологии, Будущее, Инновации, Наноматериалы

Одноатомные катализаторы (SAC, от англ. single-atom catalysts) — это материалы, в которых отдельные атомы металла равномерно распределены на поверхности подложки. Благодаря своей структуре они обладают рядом преимуществ: высокой селективностью (способностью избирательно ускорять нужные химические реакции), регулируемой реактивностью и относительно низкой стоимостью. Эти свойства делают SAC особенно перспективными для применения в таких областях, как топливные элементы, электролиз воды и другие процессы преобразования энергии.

Проблема агрегации и ограниченной загрузки.

Несмотря на свои достоинства, SAC имеют важное ограничение: при увеличении количества атомов металла на подложке они склонны к агрегации — объединению в кластеры. Это приводит к потере уникальных свойств одноатомных катализаторов и снижению их эффективности. Кроме того, большинство традиционных подложек не способны удерживать большое количество отдельных атомов, что ограничивает каталитическую активность материала.

Решение от сингапурских учёных: MoS₂ и десульфурация.

Группа исследователей из Национального университета Сингапура предложила инновационное решение этой проблемы. Они использовали двумерный материал — дисульфид молибдена (MoS₂) в его металлической фазе 1T' — в качестве подложки для SAC. С помощью метода электрохимической десульфурации (удаления атомов серы под действием электрического тока) они создали на поверхности MoS₂ множество вакансий — пустых мест, куда могут "встраиваться" атомы металла.

Эти вакансии не только позволяют разместить большее количество атомов, но и предотвращают их агрегацию, стабилизируя их в виде отдельных частиц. Более того, при определённых условиях соседние атомы могут взаимодействовать, образуя двухатомные катализаторы (DAC) — пары атомов, которые работают синергетически и могут быть ещё более эффективными, чем одиночные атомы.

Управляемый переход между SAC и DAC

Одним из ключевых достижений работы стало то, что исследователи смогли управлять переходом между SAC и DAC с помощью электрического поля. Это означает, что можно "включать" и "выключать" взаимодействие между атомами, создавая катализаторы по требованию. Такой подход открывает путь к созданию динамически настраиваемых катализаторов, способных адаптироваться к условиям реакции.

Методы исследования и подтверждение результатов.

Для изучения структуры и поведения катализаторов учёные использовали:

• Рентгеновскую абсорбционную спектроскопию (XAS) — для анализа координационной среды атомов металла;

• Сканирующую просвечивающую электронную микроскопию высокого разрешения — для визуализации отдельных атомов на поверхности MoS₂;

• Синхротронное излучение — для проведения точных измерений в режиме *operando* (в реальном времени, в процессе реакции).

Выводы и перспективы!

Работа сингапурских учёных демонстрирует новый подход к созданию высокоэффективных катализаторов, способных работать в условиях высокой плотности активных центров без потери активности. Возможность управлять состоянием катализатора с помощью электрического поля делает такие материалы особенно ценными для будущих энергетических технологий, включая водородную энергетику, электрохимические преобразования и устойчивое производство топлива.

В дальнейшем команда планирует сследовать другие комбинации металлов, которые могут образовывать DAC и демонстрировать уникальные каталитические свойства.

Показать полностью
Наука Ученые Нанотехнологии Будущее Инновации Наноматериалы
0
Партнёрский материал Реклама
specials
specials

Только каждый третий пикабушник доходит до конца⁠⁠

А сможете ли вы уложить теплый пол, как супермонтажник?

Проверить

Ремонт Теплый пол Текст
14
EofruPikabu
EofruPikabu
1 месяц назад
Край Будущего

Выявление скрытых преобразований в двумерных материалах с помощью атомно-силовых микроскопов⁠⁠

Выявление скрытых преобразований в двумерных материалах с помощью атомно-силовых микроскопов Наука, Исследования, Научпоп, Статья, Нанотехнологии, Наночастицы, Наноматериалы, Ученые

Топография АСМ и совместно локализованный оптический отклик частично интеркалированного MoS2 на графене, измеренные с помощью PiFM.

Вы когда-нибудь задумывались, как же ученые «заглядывают» внутрь материала толщиной в один атом? Нет, не с помощью какой-то магической атомарной линзы — ведь такие приборы, как сканирующая туннельная микроскопия, стоят дороже вашей квартиры и требуют условий из страшных научно-фантастических фильмов: ультравысокого вакуума и температуры, близкой к абсолютному нулю. Но давайте сделаем на секунду уступку здравому смыслу и представим, что можно обойтись без этих «атавистичных» дорогостоящих гаджетов. Звучит как выигрыш в лотерее, правда?

И вот команда исследователей из Института физики в Загребе, Хорватия, вместе с международными союзниками, показали, что это реально! Разрешите представить новый супергерой — передовую атомно-силовую микроскопию (АСМ), которая обычно у нас ассоциируется с чем-то вроде «гляжу на поверхность и трогаю ее иголочкой». Но ребята из Загреба доказали, что и эта «иголочка» может работать на атомном уровне, если использовать её с умом и в нескольких продвинутых режимах.

И самое главное — они смогли «увидеть» интеркаляцию, то есть проникновение атомов в пространство между слоями ультратонких материалов, таких как графен и MoS2 (кто еще не знаком с этими красавцами из мира 2D-материалов — настоятельно рекомендую познакомиться). Раньше, чтобы узнать, что же там происходит, приходилось звать на помощь специализированные сенсоры и космические приборы, теперь же — пожалуйста, АСМ, несколько хитрых режимов и вуаля — атомы поддаются визуализации!

Да еще и на образцах, которые, внимание, просто лежали на воздухе, а не в стерильных условиях научной фобии. Как говорит Кармен Капустич, соавтор: «Наш метод — это почти как взять микроскоп и сказать: «Покажи-ка, что там на самой обычной поверхности». Без всяких «галактических» условий».

Зачем нам всё это? Дело в том, что такие процессы, как интеркаляция, помогают настраивать свойства материалов — их электропроводность, гибкость, оптические эффекты — то есть, практически, делать из них новых героев будущих технологий: от гибкой электроники до квантовых компьютеров. И чем лучше мы их понимаем, тем быстрее двигаемся к мечтам про телефоны, которые не ломаются, и компьютеры, что читают мысли (ну, почти).

Как метко сказал д-р Дж. Ива Шрут Ракич, «не всегда нужно иметь сверхточный инструмент, чтобы понять сверхтонкие вещи». Главное — в творческом подходе и умении читать «между строк» — или в нашем случае — между атомными слоями.

Так что, друзья, наука не стоит на месте и доказывает: иногда секрет настоящей сверхточности — это не сверхоборудование, а умение видеть детали там, где другие ищут сложности. Кто знает, возможно, скоро и ваш старенький атомно-силовой микроскоп удивит мир новыми открытиями! А пока — будем следить за новостями из Загреба и мечтать о гаджетах из будущего, которые соединили бы в себе точность и доступность.

Вот так, с юмором и гвоздями науки в руках, мы приближаемся к разгадке тайны самых тонких материалов Вселенной.

Статья взята с сайта: Топография АСМ и совместно локализованный оптический отклик частично интеркалированного MoS2 на графене, измеренные с помощью PiFM.

Показать полностью
Наука Исследования Научпоп Статья Нанотехнологии Наночастицы Наноматериалы Ученые
0
7
EofruPikabu
EofruPikabu
2 месяца назад
Край Будущего

Ученые идентифицировали новый двумерный материал из борида меди с уникальной атомной структурой!⁠⁠

Ученые идентифицировали новый двумерный материал из борида меди с уникальной атомной структурой! Наука, Ученые, Научпоп, Нанотехнологии, Наночастицы, Исследования, Наноматериалы, Длиннопост

Осаждение бора на поверхности Cu(111) и измерения FER.

Более десяти лет назад исследователи из Университета Райса, возглавляемые Борисом Якобсоном, ученым-материаловедом, сделали смелое предсказание о том, что атомы бора будут слишком сильно связываться с медью, что помешает образованию борофена — гибкого металлического двумерного материала, обладающего огромным потенциалом в таких областях, как электроника, энергетика и каталитические процессы. Недавние исследования подтвердили это предсказание, однако результаты оказались неожиданными.

В отличие от систем, таких как графен на меди, где атомы могут свободно перемещаться в подложке и не образуют четкого сплава, в данном случае атомы бора сформировали определенный двумерный борид меди — новое соединение с уникальной атомной структурой. Это открытие, опубликованное в журнале Science Advances исследователями из Университета Райса и Северо-Западного университета, открывает новые горизонты для изучения относительно неосвоенного класса двумерных материалов, которые могут иметь значительное влияние на развитие технологий.

«Борофен всё ещё находится на грани существования, и каждая новая информация о нём важна, поскольку она расширяет наши знания в области материаловедения, физики и электроники», — отметил Якобсон, который является профессором инженерии, материаловедения и химии в Университете Райса. Он добавил: «Наш первый теоретический анализ предупреждал, что на меди бор будет связываться слишком сильно. Теперь, более чем через десять лет, оказывается, что мы были правы — и результатом стал не борофен, а нечто совершенно иное».

В предыдущих исследованиях борофен успешно синтезировался на металлах, таких как серебро и золото, однако медь оставалась открытым и спорным случаем. Некоторые эксперименты предполагали, что бор может образовать полиморфный борофен на меди, в то время как другие указывали на возможность фазового разделения на бориды или даже нуклеации в объёмные кристаллы. Для разрешения этих вопросов потребовалось уникально детальное исследование, которое сочетало в себе высокоразрешающую визуализацию, спектроскопию и теоретическое моделирование.

«То, что мои коллеги-экспериментаторы впервые увидели, было богатым набором изображений с атомным разрешением и спектроскопическими сигнатурами, которые потребовали значительных усилий по интерпретации», — сказал Якобсон. Эти исследования выявили периодическую зигзагообразную структуру и четкие электронные подписи, которые значительно отличались от известных борофеновых фаз. Сильное соответствие между экспериментальными данными и теоретическими моделями помогло разрешить спор о природе материала, который образуется на границе между медной подложкой и средой, близкой к вакууму в камере для выращивания.

Хотя борид меди не был целью исследования, его открытие предоставляет важные сведения о взаимодействии бора с различными металлическими подложками в двумерных средах. Эта работа расширяет знания о формировании атомно-тонких металлических боридов — области, которая может стать основой для будущих исследований связанных соединений, включая те, которые имеют известное технологическое значение, такие как металлические бориды, используемые в керамике, способной выдерживать ультравысокие температуры, что представляет большой интерес для применения в экстремальных условиях и гиперзвуковых системах.

«Двумерный борид меди, вероятно, является лишь одним из множества двумерных металлических боридов, которые могут быть экспериментально реализованы. Мы с нетерпением ждем возможности исследовать эту новую семью двумерных материалов, которые имеют широкий потенциал применения в таких областях, как электрохимическое хранение энергии и квантовые информационные технологии», — добавил Марк Херсам, профессор материаловедения и инженерии Северо-Западного университета и соавтор исследования.

Публикация взята с сайта: https://pubs.acs.org/doi/abs/10.1021/acsnano.4c09843

Показать полностью 1
Наука Ученые Научпоп Нанотехнологии Наночастицы Исследования Наноматериалы Длиннопост
0
seminon600
seminon600
1 год назад
Еврейский мир
Серия Технологии, наука стартапы, изобретатели, хайтек

Крошечные трубки помогают проводить электричество и обеспечивают безопасность электроники⁠⁠

Израильская компания разработала промышленные добавки на основе наноматериалов, которые позволяют создавать легкие и экологичные материалы, что делает их идеальным компонентом для улучшения свойств пластмасс, используемых в самолетах, поездах и даже автомобилях.

Крошечные трубки помогают проводить электричество и обеспечивают безопасность электроники Израиль, Стартап, Наноматериалы, Нанотехнологии, Наука, Пластмассовая штуковина, Углеродные нанотрубки, Ученые, Длиннопост

(Courtesy)

Запатентованные добавки, разработанные компанией Nemo Nanomaterials из Петах-Тиквы , могут производиться серийно и дополнять широкий спектр деталей. Добавки созданы на основе одностенных углеродных нанотрубок (ОУНТ).

Название компании происходит от концепции «Нано-улучшенный материал будущего», которую основатели сократили до «Немо», а также думают о капитане Немо и его путешествиях, в которых фантастические идеи стали реальностью.

Вице-президент по развитию бизнеса Джонатан Антеби говорит, что он и соучредитель и генеральный директор Александр Зиниград начали разработку добавок на основе УНТ после того, как осознали потенциал существующих наноматериалов для улучшения различных видов пластмасс и других промышленных материалов.

Крошечные трубки помогают проводить электричество и обеспечивают безопасность электроники Израиль, Стартап, Наноматериалы, Нанотехнологии, Наука, Пластмассовая штуковина, Углеродные нанотрубки, Ученые, Длиннопост

NemoBLEND – мастербатчи (концентрированные смеси) для промышленности пластмасс (Фото предоставлено)

И вот в 2018 году Антеби, ветеран индустрии пластмасс, и Зиниград, эксперт в области трансфера и коммерциализации технологий, начали работу над разработкой масштабируемой технологии производства добавок на основе УНТ. Научно-исследовательскую деятельность компании возглавляет доктор Илана Хаймов, опытный исследователь в области наноматериалов, которая присоединилась к компании с первого дня ее существования.

«Мы создали Nemo, чтобы воплотить обещания в области наноуглеродов в промышленную реальность», — рассказал Антеби NoCamels.

Они придумали продукт под названием NemoBLEND – мастербатчи (концентрированные смеси) для индустрии пластмасс.

По словам Антеби, NemoBLEND можно использовать в двух различных типах промышленных решений.

Во-первых, это электропроводность, поскольку, несмотря на то, что металл не обладает прочностью в качестве проводника, добавки по-прежнему остаются мощными. Их можно использовать при низком уровне электричества, в первую очередь для устранения необходимости использования металлического слоя в качестве проводника во многих изделиях.

Второе — электромагнитные помехи. Добавки встраивают в различные типы пластиков, чтобы предотвратить нарушение нормальной работы электронных устройств, которое обычно вызывается электромагнитными сигналами.

К таким устройствам относятся чувствительные продукты, такие как радиолокационные системы или электронные датчики, которые особенно уязвимы к этим сигналам.

Крошечные трубки помогают проводить электричество и обеспечивают безопасность электроники Израиль, Стартап, Наноматериалы, Нанотехнологии, Наука, Пластмассовая штуковина, Углеродные нанотрубки, Ученые, Длиннопост

Присадки Nemo могут использоваться производителями как электромобилей, так и топливных автомобилей, самолетов и локомотивов

«Мы обеспечиваем защиту от электромагнитных помех (предотвращение электромагнитных помех в пластике), а также проводимость, а также способность иметь дополнительные свойства, такие как огнестойкость, и при этом сохранять механические свойства», — говорит Антеби.

И хотя большинство электропроводящих изделий из пластика доступны только в черном цвете, NanoBLEND позволяет клиентам Nemo производить проводящие цветные изделия.

Nemo совместно выиграла недавнюю премию Climate Solution Prize в категории стартапов , разделив награду в размере 1,3 миллиона долларов с шестью другими молодыми израильскими компаниями в рамках инициативы по поощрению инноваций в этой области.  

Конкурс назвал Nemo «изменителем правил игры» в области воздействия производства на окружающую среду, в частности, в отношении металлообработки.

«NemoBLEND чрезвычайно универсален и может использоваться при производстве практически любых изделий, включающих пластик», — объясняет Антеби. По его словам, присадки Nemo могут использоваться производителями как электрических, так и топливных автомобилей, электронных товаров, медицинского оборудования, самолетов и локомотивов.

Крошечные трубки помогают проводить электричество и обеспечивают безопасность электроники Израиль, Стартап, Наноматериалы, Нанотехнологии, Наука, Пластмассовая штуковина, Углеродные нанотрубки, Ученые, Длиннопост

Александр Зиниград (слева) и Джонатан Антеби (справа) (Courtesy)

Кроме того, по его словам, добавки Nemo экономически эффективны для производителей, поскольку они уменьшают количество необходимого пластика и снижают цены на продукцию. Их также легко хранить и сохранять целостность до тех пор, пока они не понадобятся.

Стартап получил финансирование от Управления инноваций Израиля (правительственного ведомства, занимающегося продвижением сектора высоких технологий страны), а также от частных инвесторов. Компания также начала продавать добавки в США и Европе.

Антеби видит будущее компании, в котором NemoBLEND будет использоваться во всех отраслях, становясь постоянным компонентом для многих производителей, и благодарит своих коллег за то, что они превратили мечту в устойчивую реальность.

«Команда экспертов – инженеров, специалистов по механическим пластмассам и химии – позволила нам взять идею и превратить ее в действующую и работающую технологию», – говорит он.

«Это позволило нам изменить ситуацию».

Перевод с английского

ИСТОЧНИК

P. S.

Нет у них "Роснано"", Сколково, не будет",

А они изобретают и внедряют наноматериалы. Компания также начала продавать добавки в США и Европе.

Показать полностью 4
Израиль Стартап Наноматериалы Нанотехнологии Наука Пластмассовая штуковина Углеродные нанотрубки Ученые Длиннопост
6
7
PNIPU
PNIPU
1 год назад

Ученые Пермского Политеха научились «выращивать» детали из самого прочного и легкого материала⁠⁠

В последнее время в мире широко применяется новый вид углеродного материала – графен. Это самый легкий, прочный и тонкий из всех известных материалов, он обладает высокой гибкостью, тепло- и электропроводностью. Благодаря таким свойствам графен способен заменить многие существующие материалы в промышленности, например, он перспективен для производства элементов для автомобилей, самолетов и космических кораблей. Однако пока не существует определенной технологии объемной печати изделий из графена. Но ученые ПНИПУ нашли способ создавать изделия 3D-печатью с использованием жидких углеводородов.

Статья опубликована в сборнике «Инновационные технологии в материаловедении и машиностроении», 2023 год. Исследование выполнено в рамках Программы стратегического академического лидерства «Приоритет 2030».

В настоящее время такой уникальный наноматериал применяется в виде небольших изделий в медицине, оптике, электронике и строительстве. Однако используемые технологии не подходят для изготовления деталей в авиа и машиностроении. Для производства габаритных изделий с высокими эксплуатационными свойствами, таких как фюзеляжи и крылья самолета, необходимо использовать аддитивные технологии.

– Мы разработали технологию 3D-печати изделий из графена, которая заключается в нагревании места контакта двух графитовых деталей в жидком углеводороде (трансформаторное масло). Пропуская через них электрических ток, детали нагреваются до высокой температуры, и между ними образуется сварочная дуга. При этом происходит разложение трансформаторного масла на пары, которые улетучиваются, и углерод, который осаждается тонкими слоями. Так происходит послойное 3D-выращивание изделий из графена, – рассказывает аспирант кафедры «Инновационные технологии машиностроения» Пермского Политеха Владимир Блохин.

Политехники провели эксперимент и выявили зависимости влияния силы тока и времени горения дуги на массу образцов. Исследование показало, что увеличение входных параметров приводит к увеличению массы образца, повышает производительность процесса. При этом рост силы тока больше влияет на результат, чем время горения дуги.

– В отличие от аналогов, при изготовлении материала таким способом не нужно использовать связующее, что повышает физико-механические свойства изделий, такие как прочность, износостойкость, теплопроводность. Кроме того, технология не требует энергоемкой и дорогостоящей термической обработки, – объясняет руководитель проекта, доцент кафедры «Инновационные технологии машиностроения» Пермского Политеха, кандидат технических наук Дмитрий Караваев.

Разработка ученых ПНИПУ вносит большой вклад в производство уникального по своим свойствам материала. Технология изготовления деталей из графена перспективна для создания ответственных элементов с высокими эксплуатационными свойствами. Качественные изделия способны заменить многие существующие элементы в аэрокосмической,  автомобильной и энергетической промышленности на более прочные и легкие детали. Отечественное промышленное производство выходит на новый уровень.

Показать полностью
ПНИПУ 3D печать Графен Наноматериалы Углеводород Текст
1
Партнёрский материал Реклама
specials
specials

А вы знали, что по легенде тамагочи — это инопланетяне?⁠⁠

Они прилетели, чтобы изучать нашу планету, но оказалось, что без защитной оболочки им тут не справиться. Но в ваших силах им помочь! Открывайте игру с тамагочи и сделайте электронного питомца счастливым. Это не так просто, как было в детстве. Если справитесь, получите награду в профиль.

Играть в тамагочи

Тамагочи Ачивка Детство Текст
108
hegny
hegny
2 года назад

Ответ на пост «Наноинженеры, помогите!»⁠⁠1

Ответ на пост «Наноинженеры, помогите!» Нанотехнологии, Инженер, Высшее образование, Технологии, Наука, Наноматериалы, Наночастицы, Юмор, Ответ на пост

Отучился на наноинженера в 2007 году. Ваше оборудование 2008 года нам тогда и не снилось.

Перспективы зарплаты и карьерного роста хорошие. Как обещали в 2007 так и 2022 обещают. Даже больше. Так что по этому пункту тоже лучше стало.

Впечатления от работы можете почитать в моих постах.

Фотографию себя и своего рабочего места прилагаю, как вы и просили.

На что тратить свою жизнь, решать только вам.

Показать полностью 1
[моё] Нанотехнологии Инженер Высшее образование Технологии Наука Наноматериалы Наночастицы Юмор Ответ на пост
19
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии