Феномену хаоса — точнее, возникновению структур из беспорядка — за последние годы успела отдать дань чуть ли не каждая область науки. Беспорядок в физических, биологических (и даже экономических) процессах всегда было принято рассматривать как вещь, не допускающую теоретического анализа. Соответственно, теоретики всегда обходили ее стороной. Турбулентность в жидкости была одним из видимых на практике проявлений беспорядка и создавала трудности инженерам и физиологам одновременно. Физиков всегда раздражали кажущиеся случайными переходы от “спокойного” (ламинарного) к “бурлящему” (турбулентному) течению воды в струе из-под крана. Идеи, стоящие за теорией хаоса, неясно брезжили еще давно, но рождение теории как таковой можно смело отнести к 1961 году, а местом ее рождения назвать МIТ — Массачусетский технологический институт.
Эдвард Лоренц учился на математика, но стал метеорологом. Его интересовали долгосрочные прогнозы погоды; довольно быстро Лоренц осознал, что с любой системой уравнений, которая описывает, как погода меняется со временем, можно работать, только имея под рукой высокоскоростной компьютер. Лоренц приобрел одну из первых ЭВМ, поступивших в продажу, и написал довольно сырую программу, симулятор погоды, в основу которой лег набор из 12 уравнений. Компьютер выдавал карты погоды одну за другой.
Лоренц, как и многие другие, предполагал, что эволюция погоды детерминирована — то есть ее параметры, взятые в произвольный момент времени, однозначно определяют, какой будет погода в любой другой день, месяц и год; поэтому точность прогноза зависит только от точности параметров начального состояния. Компьютер Лоренца выдавал прогнозы в виде набора цифр, которые было несложно превратить в графику. Откровение пришло к нему в тот день, когда он решил тщательней присмотреться к результатам. Чтобы сэкономить время, Лоренц перезапустил программу, не дожидаясь, пока закончится очередной расчет, а сам отправился пить кофе.
Вернувшись, он с изумлением обнаружил, что новые результаты заметно отличаются от прежних. Затем он вспомнил, чем процедуры расчета отличались друг от друга. Второй раз он ввел данные с меньшей точностью, чем в первый; так, например, вместо параметра 0,506127, описывающего одну из особенностей погоды, он ввел просто 0,506.
Разница была меньше 1/5000 — и такая ничтожная величина, считал Лоренц, едва ли скажется на результате. 1/5000 приравнивалась к ничтожному дуновению воздуха.
У Лоренца имелись все основания решить, что компьютер ошибся. Вместо этого он углубился в наблюдения и заключил, что математический казус реален: какой бы малой ни были разница в исходных данных, результаты будут расходиться, пока короткое время спустя всякое сходство между ними не исчезнет окончательно. Вот что об этом пишет Джеймс Глейк в своей книге про хаос:
Математическое чутье подсказало Лоренцу (его коллеги начнут понимать это намного позже): здесь что-то не в порядке с философской точки зрения. Здравому смыслу угрожала опасность. Пусть уравнения и были жалкой пародией на описание погоды во всей ее полноте, Лоренц верил, что в них заложена суть поведения реальной атмосферы. В тот день он решил, что с долгосрочными прогнозами погоды следует покончить навсегда.
“Я понял, — заключает Лоренц, — что любая физическая система, которая ведет себя не периодично, непредсказуема”. Его выводы подтвердились, когда много лет спустя куда более мощные компьютеры запрограммировали на моделирование погоды. В новую программу было заложено уже не 12, а полмиллиона с лишним уравнений. Так родился “эффект бабочки”: если бабочка в Пекине пошевелит крыльями, этого будет достаточно, чтобы изменить погоду в Нью-Йорке месяц спустя.
Это выдержка из книги "Эврики и эйфории". Так вот теперь моя мысль: Надеюсь что никто особо не пострадает в связи с тем что я сегодня смачно так перданул на балконе.