1586

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Основная линия в блоках питания компьютеров — 12 вольт. Она снабжает энергией все ключевые компоненты ПК, в том числе процессоры и видеокарты. При этом, рабочее напряжение питания GPU или CPU в среднем составляет всего 1 вольт. Чтобы получить этот 1 вольт из 12, применяются понижающие DC-DC преобразователи (buck converter или step-down converter), основанные на принципах широтно-импульсной модуляции — ШИМ. Их еще называют регуляторами напряжения — VRM. Как это работает?

В чем суть ШИМ?

Возьмите обычный вентилятор. Если его включить, он будет дуть с одинаковой силой.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Что произойдет, если с равной периодичностью дергать рубильник — включать вентилятор всего на полсекунды, а на следующие полсекунды выключать?

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Двигатель вентилятора не может мгновенно набрать максимальную скорость вращения, поэтому за такой небольшой промежуток времени он как следует не разгонится. Но и остановиться за то же время он не успеет, так как продолжит крутиться по инерции. Так что вентилятор продолжит дуть, но с гораздо меньшей мощностью. Попробуйте поэкспериментировать со своим домашним вентилятором. Так и работает простейший ШИМ-регулятор. Вместо человека с выключателем используется транзистор — MOSFET — он то открывается на некоторое время (ВКЛ), то закрывается (ВЫКЛ). Только делает это с частотой не два раза в секунду (2 Гц), а от нескольких тысяч и до миллионов раз в секунду (кГц, МГц). Вы так точно не сможете. Такой транзистор работает в ключевом режиме и, соответственно, называется «ключевым».

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Но питать таким напряжением процессор по-прежнему нельзя, потому что на выходе выключателя (транзистора) оно будет той же амплитуды, что и на входе, т.е. те же 12 вольт, только в виде прерывистых импульсов.

Устройство buck converter, или понижающего DC-DC преобразователя

Чтобы получить необходимое нам постоянное напряжение, к ключевому мосфету VT1 добавим еще несколько элементов:

  • катушка индуктивности — L;

  • конденсатор — C;

  • синхронный транзистор — VT2.

Транзистор VT1 часто называют верхним плечом, а VT2 — нижним.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Катушка и конденсатор образуют сглаживающий LC-фильтр, который и «расплющит» импульсы в желанную «прямую». Синхронный транзистор VT2 замыкает цепь и тем самым обеспечивает непрерывное течение тока, когда VT1 выключен.

Технически можно разделить цикл преобразования на две стадии: накачка энергии в катушку с конденсатором и стадию разряда.

Первая стадия — накачиваем энергию

Когда транзистор VT1, он же мосфет верхнего плеча, открыт, синхронный транзистор VT2 —  мосфет нижнего плеча — закрыт. В катушке L накапливается энергия, плавно нарастает ток. Заряжается выходной конденсатор C.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Вторая стадия — стадия разряда

В определенный момент времени, который наступает в зависимости о того, какое напряжение нам нужно на выходе (об этом ниже, в главе про расчеты), транзистор VT1 закрывается, открывается синхронный VT2. Он нужен, чтобы соединить вход катушки с отрицательным выводом нагрузки и создать замкнутую цепь. Пусть мы и разорвали на этот краткий миг связь с источником питания, но катушка никуда не делась. Она, благодаря накопленной энергии, поддерживает силу и направление тока, а конденсатор обеспечивает неизменный ток на нагрузке.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

После завершения второй стадии, транзистор VT1 снова открывается, а VT2 закрывается, и цикл начинается заново. Причем для наибольшей эффективности циклы повторяются с высокой частотой — у современных компьютерных комплектующих 300-500 тысяч раз в секунду. Измеряется в килогерцах, кГц.

Еще раз отмечу, что транзисторы работают в ключевом режиме. Для упрощения, в схеме их можно представить в виде обычных выключателей, которые включаются и выключаются поочередно:

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Никакой другой функции транзисторы в схеме не выполняют, а ток, протекающий через ключи примерно равен току нагрузки.

Как из импульсов 12 В получаются постоянные 1 В?

Благодаря непрерывно повторяющимся циклам, на выходе мосфета VT1 формируется высокочастотный прямоугольный однополярный сигнал амплитудой 12 В:

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

После транзистора VT1 установлен обычный Г-образный низкочастотный LC-фильтр, который способен выделить из этого сигнала постоянную составляющую путем ослабления первой и последующей гармоник спектра — набора синусоидальных сигналов кратной частоты, из которого состоит прямоугольный сигнал. Первая гармоника равна частоте прямоугольного сигнала, а последующие кратны ей.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Слева — прямоугольный сигнал, справа его амплитудный спектр

Отношение амплитуд первой гармоники на входе и выходе фильтра называется «коэффициентом сглаживания», поэтому LC-фильтр также называется «сглаживающим». Последующие кратные гармоники идут с более высокой частотой и меньшей амплитудой, поэтому их при расчете не учитывают. Если фильтр эффективно справляется с первой, то с остальными проблем не будет. По итогу прямоугольные импульсы сглаживаются, образуют близкую к прямой линию постоянного усредненного напряжения. Высокие 12-вольтовые «горки» равномерно размазались в 1-вольтовую «прямую»:

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

То, что линия напряжения не совсем прямая — это нормально. В реальных условиях идеальных LC-фильтров не существует — гармоники никогда не подавляются полностью. Как раз то, что принято называть «пульсациями напряжения». Вот, как это выглядит на реальной осциллограмме:

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Как настраивается преобразователь

Уровень напряжения на нагрузке зависит от длительности первой и второй стадий в рамках одного цикла. Чем дольше открыт транзистор VT1, тем шире прямоугольные импульсы нашего высокочастотного сигнала, а значит, тем выше будет по итогу усредненное напряжение после LC-фильтра.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Если мы поделим время первой стадии (t1) на длительность полного цикла (Тполн.), то получим безразмерную величину, которая называется коэффициентом заполнения (D).

Скважность или коэффициент заполнения?

Небольшая ремарка: именно «коэффициентом заполнения» обозначена длительность импульса относительно длительности цикла. Скважность (S) — обратная величина, т.е. отношение времени цикла к длительности импульса (Tполн / t1) — может быть от единицы до бесконечности. Эти две характеристики часто путают, но расчеты можно производить обоими способами. Я предпочитаю считать через D — коэффициент заполнения. Так, на мой взгляд, удобнее.

Величина D может быть от 0 до 1, а значит её можно перевести в проценты. Т.е. импульс занимает от 0 до 100 % времени от всего цикла.

D =  Tполн./t1

Чтобы узнать выходное напряжение (Uout), нужно коэффициент заполнения умножить на входное напряжение (Uin).

А чтобы узнать коэффициент заполнения, делим Uin на Uout. Получается простейшая формула:

D = Uin / Uout * 100 %

Пример: чтобы получить из 12 вольт типичное для центрального процессора напряжение в 1,2 вольта, коэффициент заполнения должен быть равен 10 %:

1,2 / 12 = 0,1 * 100 % = 10 %

Это значит, что первая стадия (накачки энергии) займет всего 10 % времени от общей длительности цикла, а оставшиеся 90 % времени уйдут на стадию разряда. Т.е. транзистор нижнего плеча VT2 в этом случае работает в 9 раз дольше, чем VT1.

Еще раз визуально:

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника
Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника
Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

О потерях на преобразователе

Любой проводник имеет ненулевое сопротивление и нагревается, когда через него проходит ток. Мосфет в ключевом режиме — тоже проводник, как обычный выключатель. И сопротивление (Rds) между его входом и выходом (сток-исток) не равно нулю. Значит, чем выше сопротивление, тем сложнее будет электронам пробиться через него, что приведет к падению напряжения на транзисторе и последующему увеличению тепловыделения. С ростом тока нагрузки проблема только усугубляется. Кроме того, наивысший КПД транзисторов достигается при относительно небольшой силе тока, что делает подбор компонентов еще более сложной задачей.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Эффективность сборок на мофетах Alpha & Omega AOZ5311NQI. Видно, что пик КПД приходится на 1/3 от максимального тока.

Решение тривиально: в мощных преобразователях, чтобы минимизировать потери, используется не один узел с парой транзисторов, одной катушкой и одним конденсатором, а несколько параллельно подключенных фаз, которые могут управляться единым контроллером.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Синхронный транзистор VT2 открыт многократно дольше чем VT1, поэтому VT2 часто дублируют и стараются подобрать продвинутую и дорогую модель с более низким Rds.

Почему «фазы»?

Параллельно подключенные преобразователи не просто так называют «фазами». Процесс переключения транзисторов в каждом узле происходит не одновременно, а с небольшим сдвигом по фазе.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

На выходе после LC-фильтров все фазы объединяются в одну, а пульсации из-за сдвига по времени не складываются. Поэтому размах пульсаций становится значительно ниже, чем если бы они работали одновременно, а частота — выше.

Материнская плата: "VRM" устройство и принцип работы понижающего DC-DC преобразователя Инженер, IT, Компьютерное железо, Компьютер, Технологии, Электроника, Материнская плата, Чип, Электричество, Длиннопост, Импульсный бп, Схемотехника

Так что даже несколько десятков фаз в преобразователе на материнской плате неправильно называть «избытком». Ведь это не только меньшие потери, но и лучшее качество напряжения. Меньше пульсаций напряжения — меньше выбросов во внутренние узлы процессора — выше стабильность всей схемы, особенно при разгоне.

Те же принципы справедливы и для графического чипа видеокарты, процессора смартфона и любой другой «тонкой» электроники. Но в этом случае разработчики уже за нас рассчитали потребляемую мощность и количество необходимых узлов. А вот при выборе материнской платы пользователь должен сам определить, что ему нужно, учесть потребляемую мощность процессора. Тем более, если в планах серьезный разгон.