
Кометы
12 постов
В этом видео речь пойдёт о наиболее интересных группах астероидов, располагающихся возле орбиты Юпитера. Это Троянские астероиды Юпитера, а также Хильды. Рекомендую смотреть на большом экране со звуком.
Троянские астероиды делятся на две группы: Греки и Троянцы. Греки движутся вокруг Солнца синхронно с Юпитером на 60° впереди него в окрестностях точки Лагранжа L₄ системы Юпитер–Солнце. Троянцы движутся аналогично, но на 60° позади Юпитера в окрестностях точки Лагранжа L₅. К настоящему времени суммарно их открыто около 15 тысяч, причём Греков примерно в 2 раза больше Троянцев. О десяти самых крупных троянских астероидах Юпитера подробно рассказывалось в видео, опубликованном в марте 2024 года.
Хильды – это группа астероидов, движущихся вокруг Солнца в орбитальном резонансе 3:2 с Юпитером. Это означает, что каждый астероид этой группы делает 3 оборота вокруг Солнца за точно такое же время, за которое Юпитер делает 2 оборота. Их известно около 7 тысяч. Каждый из них движется по эллиптической орбите, задерживаясь в окрестностях одной из трёх точек Лагранжа системы Юпитер–Солнце. Две из них (L₄ и L₅) упоминались ранее, третья (L₃) располагается на орбите Юпитера в противоположной от него точке. Хильды задерживаются в вершинах треугольника, поскольку там они проходят афелии своих орбит. Скорость их движения в этих трёх точках минимальна, поэтому и концентрация астероидов там выше. В отличие от Троянских астероидов, каждый объект группы Хильды не связан ни с одной из трёх точек Лагранжа. Но при этом он последовательно проходит через каждую из них.
Скачать видео в хорошем качестве можно здесь.
В этом видео вы узнаете об околоземных астероидах. Это объекты, которые могут угрожать нашей планете, то есть пересекают орбиту Земли или подходят достаточно близко к ней. К настоящему моменту известно 38.5 тысяч таких астероидов. В зависимости от параметров орбит околоземных астероидов их делят на четыре группы: Атиры, Атоны, Аполлоны и Амуры.
Атиры – это группа астероидов, орбиты которых полностью ограничены орбитой Земли (размер большой полуоси a меньше 1.0 а.е., афелий Q меньше 0.983 а.е.). Это самая малочисленная группа околоземных астероидов: к настоящему времени известно лишь 36 таких объектов. Сейчас они не представляют угрозы для Земли, но ситуация может измениться в будущем в результате их возможного сближения с Венерой или Меркурием.
Атóны – это астероиды, орбиты которых находятся почти полностью внутри орбиты Земли, при этом пересекающие её (размер большой полуоси a меньше 1.0 а.е., афелий Q больше 0.983 а.е.). Их опасность заключается в том, что обычно они приближаются к нашей планете со стороны Солнца, поэтому их сложно обнаружить. Сейчас известно около 3 тысяч Атонов, в их числе знаменитый Апофис.
Аполлоны – это астероиды, орбиты которых находятся почти полностью за пределами орбиты Земли, при этом пересекающие её (размер большой полуоси a больше 1.0 а.е., перигелий q меньше 1.017 а.е.). Это самая многочисленная группа околоземных астероидов, на данный момент их открыто почти 22 тысячи. Любопытно, что один из них (1999 XS₃₅) в афелии оказывается за орбитой Нептуна.
Амуры – это астероиды с орбитами, находящимися целиком за пределами земной орбиты, но почти касающихся её (размер большой полуоси a больше 1.0 а.е., перигелий q больше 1.017 а.е., но меньше 1.3 а.е.). Открыто около 13.5 тысяч Амуров, причём некоторые из них удаляются от Солнца на сотни астрономических единиц. Из-за сближений с газовыми гигантами их орбиты сильно эволюционируют, они могут стать Аполлонами и представлять непосредственную угрозу Земле.
Орбиты многих из околоземных астероидов довольно сильно наклонены к плоскости эклиптики. Поэтому потенциально опасными считаются не каждый из них, а только несколько тысяч, которые являются достаточно крупными и, при этом, имеют сближения с Землёй. Орбиты астероидов подвержены изменениям под воздействием планет, с которыми они могут сближаться. Регулярно обнаруживают ранее неизвестные околоземные астероиды, например, за последние полгода их количество увеличилось на одну тысячу. Также их число может расти из-за столкновений крупных астероидов главного пояса и возмущения его объектов со стороны Юпитера. Важно продолжать поиск и каталогизацию околоземных астероидов, так как это способствует решению проблемы астероидной опасности.
Если вы посмотрели эту работу, скорее всего почувствовали разочарование из-за качества видео. Моё разочарование не меньше вашего. Я перепробовал множество бесплатных площадок для просмотра видео. Моё исходное видео в отличном качестве после загрузки на любую из площадок показывается в отвратительном качестве. Некоторые интервалы (особенно с 00:26 по 00:52 и с 03:54 по 04:33), где я показываю одновременно все известные астероиды, выглядят хуже, чем некоторые любительские ролики, которые выкладывали в середине нулевых, когда просмотр видео в интернете ещё только зарождался.
В этой работе я хотел отобразить одновременно около полутора миллионов известных астероидов. Видимо, современные алгоритмы сжатия не адаптированы под такой научный контент, когда на экране одновременно отображается миллион точек, движущихся в разных направлениях. Получить видео приемлемого качества можно только в том случае, если не экономить место на диске и уменьшить степень сжатия.
Я обратился в техподдержку каждой из площадок, отправил им исходное видео. Они только пожали плечами, сказали, что с файлом всё нормально. Помочь каким-то образом и повлиять на процесс они никак не могут.
При загрузке какого-либо видео на любую площадку оно проходит обработку: готовится несколько файлов в форматах: 360p, 480p, 720p, 1080p, чтобы видео мог посмотреть любой пользователь на любом устройстве даже при самом слабом интернет-соединении. И какого бы идеального качества не было исходное видео, при его обработке происходит сжатие (даже для разрешения 1080p), причём на степень этого сжатия повлиять невозможно. Нет такой галочки, которую можно поставить при загрузке, чтобы попросить площадку не сжимать чрезмерно моё видео.
После этого я решил попробовать несколько платных видеохостингов, в том числе, ориентированных на бизнес. Каково же было моё удивление, когда выяснилось, что даже платные видеохостинги не предлагают такой опции: разрешить показывать пользователям видео в исходном качестве.
Аналогичная ситуация обстоит и с платформами для продажи контента. На таких площадках предлагается размещать цифровой контент для его продажи заинтересованным зрителям, но при этом не предоставляется возможность повлиять на то, в каком качестве этот контент будет отображаться.
Единственное решение, к которому мне удалось прийти: выкладывать исходный ролик в виде файла на каком-либо файлообменнике и предоставлять пользователям ссылку для скачивания этого видео, чтобы они могли посмотреть его в хорошем качестве на своих устройствах.
Файлы моих исходных видео занимают очень много места на серверах. Например, это 4-минутное видео в разрешении 1080p занимает 3 ГБ, в разрешении 4К – целых 10 ГБ. По этой причине для этих целей подходят только платные файлообменники, так как на бесплатных тарифах места хватит только на один единственный файл.
В связи с этим я вынужден сделать доступ к моим видео в хорошем качестве платным.
Последнее время я публикую свои работы нерегулярно, и случаются периоды длительностью в 1–2 месяца, когда на моём канале может не выйти ни одного видео. Поэтому считаю, что более правильным будет брать оплату не за подписку, а за доступ к каждому конкретному видео.
Вы можете, как и раньше, бесплатно просматривать все мои видео в обычном качестве. Если какое-то видео вас особенно заинтересовало, вы сможете приобрести его версию в хорошем качестве, например, в разрешении 4К, чтобы смотреть его на своём устройстве.
Спасибо за понимание. Буду благодарен за вашу поддержку. С нетерпением жду ваши советы и идеи по размещению видео.
Скачать видео в хорошем качестве можно здесь.
Моделирование и визуализация выполнены автором этой публикации с помощью программного обеспечения собственной разработки. При расчётах учитывалось взаимное влияние друг на друга Солнца, всех планет Солнечной системы и Луны. Также при расчёте учитывались релятивистские эффекты. Движение астероидов показано без учета планетных возмущений. На протяжении всего видео размеры небесных тел показаны сильно преувеличенными по сравнению с расстояниями между ними.
В этом видео вы узнаете о троянских астероидах Земли. К настоящему времени известно только два таких астероида: 2010 TK₇ и 2020 XL₅. Оба относятся к точке Лагранжа L₄ системы Земля–Солнце. Ещё в начале прошлого века троянские астероиды были обнаружены у Юпитера, и сейчас их известно уже более 15 тысяч. Относительно недавно аналогичные объекты стали находить у Марса, Нептуна и других планет.
Первый троянский астероид Земли был открыт лишь в 2010 году, его обозначение 2010 TK₇. Его орбита умеренно вытянута и наклонена к плоскости орбиты Земли почти на 21 градус. Обнаружить этот тусклый объект с поперечником всего лишь около 380 метров удалось с помощью космического телескопа WISE. В 2020 году был открыт второй троянский астероид Земли – 2020 XL₅. Его орбита более вытянута, чем у первого, но наклонена на 14 градусов к плоскости эклиптики. Второй астероид крупнее первого, его размер около 1200 метров. Но обнаружить его оказалось ещё сложнее из-за бо́льшего расстояния до него от Земли.
2010 TK₇ и 2020 XL₅ делают полный оборот вокруг Солнца практически за то же самое время, что и Земля, то есть за один год. Оба астероида постоянно находятся в окрестностях орбиты нашей планеты. Земля движется вслед за этими астероидами, причём средняя дистанция до них практически не меняется. Так как вращение астероидов 2010 TK₇ и 2020 XL₅ вокруг Солнца синхронизировано с вращением Земли, то спустя год они оказываются в той же точке неба, что и годом ранее. По этой причине траектории их движения относительно Земли оказываются практически замкнутыми.
Обе траектории напоминают деформированное велосипедное колесо, только траектория 2020 XL₅ обладает бо́льшими размерами. Похожую траекторию относительно нашей планеты имеют и другие астероиды, находящиеся в орбитальном резонансе 1:1 с Землёй, например, Круитни. Однако Круитни не является троянским астероидом Земли, его можно считать квазиспутником нашей планеты. Объект считается троянским астероидом Земли, если он находится в окрестностях одной из точек Лагранжа системы Земля–Солнце: L₄ или L₅.
Точка Лагранжа L₄ движется по орбите Земли на 60 градусов впереди нашей планеты, точка L₅ – на 60 градусов позади неё. Особенность точки Лагранжа состоит в том, что в ней относительно стабильно может находиться третье тело с малой массой. Когда говорят, что астероид находится в точке Лагранжа, это не означает, что он зафиксирован в этой точке. Это означает, что небесное тело совершает колебания относительно этой точки. Траектории астероидов 2010 TK₇ и 2020 XL₅ относительно точки L₄ системы Земля–Солнце также являются практически замкнутыми.
Траектории движения троянских астероидов 2010 TK₇ и 2020 XL₅ относительно точки Лагранжа L₄ системы Земля–Солнце
В окрестностях точек Лагранжа Земли наверняка присутствуют и другие астероиды, которые пока не удалось обнаружить. Проблема в том, что точки L₄ и L₅ находятся от Земли на таком же расстоянии, что и Солнце: это около 150 млн км. С такого расстояния небольшие астероиды с размерами до одного километра обнаружить очень сложно. К тому же угол между Солнцем и любой из этих точек составляет 60 градусов. Наблюдать эту область пространства с поверхности Земли затруднительно, так как с наступлением темноты она оказывается низко над горизонтом. В точке L₅ троянские астероиды Земли пока не обнаружены, но в ней наблюдается большое скопление космической пыли. Точки Лагранжа системы Земля–Солнце, благодаря их особенностям, активно используются космическими аппаратами. Поэтому дальнейшие поиски троянских астероидов Земли представляют интерес для науки.
В этом видео вы можете наблюдать смоделированный пояс астероидов. Если в предыдущем видео показывались только 83 тысячи крупнейших астероидов, то в этом удалось изобразить все известные астероиды. Таким образом, каждая движущаяся точка на экране – это один из почти полутора миллионов астероидов. И каждая из этих точек движется по вычисленной траектории, соответствующей реальной орбите астероида.
В третьей части видео об астероиде Камоалева, который является квазиспутником Земли, предлагается взглянуть на него с необычной точки зрения. Астероид будет помещён в центр системы координат, что позволит рассмотреть, как движется Земля относительно него. На самом деле эта траектория аналогична траектории астероида относительно планеты. Но из-за наличия у Земли Луны движение нашей планеты относительно Камоалевы выглядит особенно завораживающим. Рекомендую смотреть это видео со звуком на большом экране в полной темноте.
В первой части видео была показана траектория Камоалевы относительно Земли в настоящее время. В ней подробно объясняется, почему траектория выглядит настолько сложной и при этом является практически замкнутой. Во второй части была показана эволюция его орбиты на протяжении нескольких столетий. В ней можно наглядно увидеть, как траектория медленно, но непрерывно деформируется с течением времени.
Согласно последним исследованиям, астероид Камоалева может быть фрагментом Луны. Этот осколок мог быть выброшен в космос при образовании одного из крупных ударных кратеров Луны несколько миллионов лет назад. В исследовании выдвинуто предположение, что этим кратером может быть кратер Джордано Бруно.
В этом видео вы можете наблюдать смоделированный пояс астероидов. Каждая движущаяся точка на экране – это один из 83 тысяч наиболее крупных астероидов. И каждая из этих точек движется по вычисленной траектории, соответствующей реальной орбите астероида.
Моделирование и визуализация выполнены автором этой публикации с помощью программного обеспечения собственной разработки. При расчётах учитывалось взаимное влияние друг на друга Солнца, всех планет Солнечной системы, Луны и астероида. Также при расчёте учитывались релятивистские эффекты. На протяжении большей части этого видео размеры небесных тел показаны сильно преувеличенными по сравнению с расстояниями между ними.
В этом видео вы узнаете о комете C/2024 G3 (ATLAS). Её орбита очень близка к параболе, но всё же является слабо гиперболической. Поэтому если она переживёт сближение с Солнцем, то, вероятно, покинет Солнечную систему. 13 января 2025 года примерно в 11:00 по Всемирному времени она пройдёт в 14 млн км от центра Солнца на скорости почти 140 км/с. Рекомендуется смотреть это видео на большом экране со звуком (звук по умолчанию отключен).
Орбита кометы C/2024 G3 (ATLAS) очень похожа на орбиту кометы C/2024 S1 (ATLAS), которая в конце октября 2024 года распалась рядом с Солнцем. В отличие от предыдущего объекта, эта комета подойдёт не столь близко к Солнцу, поэтому вполне может пережить прохождение перигелия. Схожесть орбит двух комет намекает на их общее происхождение. Скорее всего обе они относятся к семейству Крейца и являются осколками Большой кометы 1106 года.
Как и у других комет семейства Крейца, хорошие условия для её наблюдения возможны только в Южном полушарии. Её можно будет попытаться разглядеть в утреннем небе за несколько дней до прохождения перигелия и в течение нескольких вечеров после этого. Непосредственно момент её прохождения перигелия теоретически может наблюдаться из Северного полушария. Несмотря на то, что она может достичь яркости Венеры, её близость к Солнцу в этот момент вряд ли позволит разглядеть её в дневном небе. Будьте осторожны при наблюдении кометы: ни в коем случае не смотрите на Солнце, чтобы не получить ожог сетчатки глаза.
В этом видео вы узнаете о комете Шумейкеров–Леви 9 и об одной из возможных её орбит до встречи с Юпитером. Будет показан гравитационный захват кометы газовым гигантом, последующее вращение вокруг него, распад кометы на фрагменты с последующим их падением на Юпитер. На создание этого 9-минутного ролика мне потребовалось три месяца! Рекомендую смотреть его на большом экране и обязательно со звуком! Сразу включайте звук, потому что по умолчанию он отключен. Удовольствие от просмотра гарантирую!
Изначальный размер ядра кометы Шумейкеров–Леви 9 оценивается в 5 км. В середине 19-го века перигелий её рассматриваемой орбиты находился недалеко от орбиты Юпитера. В афелии комета приближалась к орбите Сатурна. Её орбита имела небольшой эксцентриситет, то есть была слабо вытянутой. Также она имела небольшой угол наклона к плоскости эклиптики и плоскости орбит Юпитера и Сатурна.
При выбранных параметрах встреча кометы с Юпитером могла произойти ещё в самом начале 20-го века. Эта встреча привела к гравитационному захвату кометы Юпитером, и она стала вращаться вокруг него. Комета попала в сферу Хилла, то есть область пространства, в которой планета может удерживать спутник, несмотря на гравитацию Солнца. Однако видео наглядно показывает, что траектория кометы не является замкнутой.
Комета выполняла серию нескольких вытянутых витков вокруг Юпитера. Затем делала несколько оборотов вокруг него по почти круговой орбите. Комета не могла выйти на замкнутую орбиту вокруг Юпитера из-за сильных гравитационных возмущений со стороны Солнца. Чередование вытянутых и круговых витков происходило по мере движения Юпитера вокруг Солнца. Полный цикл чередования занимал примерно то же самое время, за которое газовый гигант делал два оборота вокруг центрального светила. За это время непрерывно менялась ориентация орбиты кометы по отношению к Солнцу. Она то поворачивалась к звезде ребром, то оказывалась развёрнутой к ней плашмя. В некоторые моменты времени комета оказывалась несколько ближе к Солнцу, которое с большей силой притягивало её к себе. Это сильно дестабилизировало орбиту кометы и приводило к довольно резкой смене её ориентации в пространстве.
Во время выполнения вытянутых витков вокруг газового гиганта, комета иногда проходила всего в нескольких миллионах км от него. В такие моменты очень сильно возрастает неопределённость в расчётном положении кометы. Дело в том, что координаты любого небесного объекта известны с некоторой погрешностью. Каждое тесное сближение объекта с планетой увеличивает неопределённость в координатах на один или даже на два порядка. Из-за этого невозможно точно сказать, когда именно комета Шумейкеров–Леви 9 вышла на орбиту вокруг Юпитера. Существуют оценки, что она могла быть захвачена им лишь в середине 60-х или даже в начале 70-х годов прошлого века. Однако сценарий, показанный в этом видео (что комета пробыла на орбите Юпитера почти сотню лет), также вполне возможен.
Достоверно известно, что 7 июля 1992 года произошло особо тесное сближение кометы Шумейкеров–Леви 9 с Юпитером. Она прошла всего в 40 тыс км от атмосферы планеты. Это сближение было настолько тесным, что мощные приливные силы Юпитера разорвали ядро кометы на множество фрагментов. Комета была открыта Юджином и Каролиной Шумейкерами и Дэвидом Леви 24 марта 1993 года. В тот момент она уже представляла собой множество обломков. Был обнаружен по меньшей мере 21 фрагмент, растянувшийся вдоль траектории движения в виде цепочки. После открытия кометы и вычисления её траектории стало ясно, что дальнейшее движение фрагментов приведёт к их столкновению с Юпитером. Все расчёты подтвердились. Падение фрагментов происходило в течение недели: с 16 по 22 июля 1994 года. Осколки падали на Юпитер со скоростью свыше 60 км/с. Это приводило к колоссальным взрывам в атмосфере газового гиганта. Мощность каждого из взрывов многократно превышала мощность совокупного ядерного потенциала, накопленного на Земле.
Сами моменты падения не наблюдались с Земли, так как столкновение каждого объекта происходило на обратной стороне Юпитера. Однако хорошо были видны последствия столкновений. Облако раскалённого газа, образующееся при взрыве в момент входа обломков в атмосферу Юпитера, поднималось на огромную высоту. В результате, это облако можно было наблюдать с Земли. Также с Земли хорошо были видны тёмные следы от взрывов в атмосфере Юпитера, которые по размеру превышали нашу планету. Эти следы можно было заметить в течение многих недель после взрывов. Моменты падения фрагментов наблюдались космическим аппаратом Галилео, который в это время как раз направлялся к Юпитеру.
Это грандиозное событие, произошедшее 30 лет назад, стало первым наблюдаемым столкновением двух небесных тел. Оно дало понимание, какую важную роль играет Юпитер в защите Земли. Самая большая планета Солнечной системы принимает на себя значительную часть ударов астероидов и комет.
Моделирование и визуализация выполнены автором этой публикации с помощью программного обеспечения собственной разработки. При расчётах учитывалось взаимное влияние друг на друга Солнца, всех планет Солнечной системы, Луны и кометы. Также при расчёте учитывались релятивистские эффекты. Негравитационные эффекты, связанные с испарением вещества ядра кометы и возможным столкновением фрагментов друг с другом, не учитывались. На протяжении большей части этого видео размеры небесных тел показаны сильно преувеличенными по сравнению с расстояниями между ними.
Это фото кометы C/2023 A3 (Цзыцзиньшань–ATLAS) сделано вечером 14 октября в Самаре на телефон с выдержкой 6 секунд. Фотография не была обработана, на ней справа сверху присутствуют артефакты из-за яркого прожектора.
Со вторника, 15 октября синоптики прогнозируют ухудшение погоды в Самаре. Поэтому, возможно, это последняя моя фотография кометы Цзыцзиньшань–ATLAS.
Это фото кометы C/2023 A3 (Цзыцзиньшань–ATLAS) сделано в Самаре без обработки с выдержкой 25 секунд. Из-за длинной выдержки её яркая кома и звезда над её хвостом выглядят чёрточками.
Ещё одна фотография с выдержкой 25 секунд, но с меньшим зумом:
А это фото сделано с выдержкой всего в одну секунду. Примерно так было видно комету невооружённым глазом.
Прошу прощения за качество фотографий. У меня отсутствует опыт в астрофотографии. Нет штатива с часовым механизмом. Есть только примитивный фотоаппарат.