Согласно новым исследованиям, космические аппараты, изготовленные из аэрографита (углеродной пены), использующие энергию Солнца, смогут достичь Альфу Центавра за 185 лет. Большое количество таких аппаратов помогут в изучении Солнечной системы и, в частности, в поиске загадочной девятой планеты, если она существует.
Современная космическая техника использует двигательные установки на химическом топливе. К сожалению, они не столь эффективны, чтобы дать возможность добраться до других звезд за период, сопоставимый с жизнью человека.
К примеру, ближайшая к Земле звездная система, Альфа Центавра, находится на расстоянии в 4.37 световых года, или более 41.2 трлн. километров, что равняется 276 000 расстояниям от Земли до Солнца. Так, запущенному в 1977 году Вояджер-1, который в 2012 году вышел в межзвездное пространство, потребовалось бы примерно 75 000 лет, чтобы добраться до соседней звездной системы.
Одна из основных проблем применяемых ныне ракетных двигателей – топливо, и как следствие, его масса. Для долгого путешествия требуется много топлива, что увеличивает общую массу корабля, для которого требуется еще больше топлива. Проблема растет экспоненциально с ростом размеров космического аппарата.
Одним из вариантов решения может быть солнечный парус. Хотя давление солнечного света мало, все же его возможно использовать эффективно при большой площади паруса/зеркала и малом весе космического корабля.
В 2016 году была анонсирована программа Breakthrough Starshot стоимостью 100 миллионов долларов, направленная на запуск к Альфе Центавра множества космических кораблей размером с микрочип, каждый из которых обладает необычайно тонкими парусами с высокой отражающей способностью. Согласно планам, эти микрокорабли смогут достичь скорости в 20% от скорости света, что позволит долететь до системы Альфа Центавра за 20 лет.
Основной недостаток этого проекта состоит в необходимости постройки необычайно мощной лазерной установки, представляющей собой массив лазеров, использующихся для ускорения этих космических аппаратов. На данный момент нет технологии для постройки такой установки, а проект по созданию массива лазеров оценивается в 5-10 млрд. долларов.
Используя последние исследования, астрофизики предложили более дешевую альтернативу - углеродную пену. Зонды, сделанные из этого материала, смогут совершать межзвездные перелеты быстрее, чем любая ракета, будучи питаемыми исключительно солнечным светом, без необходимости в гигантской лазерной матрице.
Для разработки способа, позволяющего использовать солнечный свет для ускорения аппарата с солнечным парусом до необходимых в межзвездных перелетах скоростей, исследователи проанализировали предыдущие научные исследования в поисках прочных и легких материалов. Выбор пал на аэрографит, пену на углеродной основе, которая в 15 000 раз легче алюминия.
По расчетам, полая сфера из аэрографита диаметром около 3,3 фута (1 метр) с оболочкой толщиной в 1 микрон (около 1% от диаметра человеческого волоса) будет весить всего пять миллионных долей фунта (2,3 миллиграмма).
Такая сфера с полезной нагрузкой 0.035 унции (1 грамм), если будет запущена с расстояния примерно в одну астрономическую единицу (AU) от Солнца, то солнечный свет сможет разогнать ее до скорости примерно 114 000 миль в час (183 600 км/ч) - в три раза больше, чем у Вояджер-1. В частности, орбиты Плутона можно было бы достичь менее, чем за 4 года. (Астрономическая единица – среднее расстояние от Земли до Солнца, составляющее 93 млн. миль или 150 млн. километров).
Если осуществить запуск зонда с расстояния около 0,04 а.е. от Солнца (это минимальное расстояние от нашего зонда Паркер), более интенсивный солнечный свет разогнал бы космический корабль почти до 15,4 миллиона миль в час (24,8 миллиона км/ч). Это позволит пройти расстояние в 4.2 световых года до Проксима Центавра за 185 лет. Чем больше размер сферы, тем большую скорость возможно достичь. Или увеличить полезную нагрузку. (Проксима Центавра – одна из звезд в тройной звездной системе созвездия Центавра).
«Что меня больше всего поражает в наших результатах, так это тот факт, что выходная мощность звезды, в нашем случае Солнца, может быть использована для перемещения межзвездного зонда к ближайшим звездам без необходимости использования дополнительного бортового источника питания.»
- в интервью ресурсу Space.com сообщил ведущий автор исследования Рене Хеллер (René Heller), астрофизик из Института исследований солнечной системы им. Макса Планка в Геттингене, Германия.
«Нам не нужна наземная лазерная установка стоимостью в миллиард долларов, чтобы разгонять парус в космосе. Вместо этого мы можем использовать, так сказать, зеленую энергию»,
- сказал Хеллер.
Исследователи признают, что несколько граммов электроники или другой полезной нагрузки маловато, чтобы говорить о полноценной миссии. Хотя и отмечают, что полезная нагрузка этих кораблей будет в 10 раз больше массы самого космического корабля, в то время как полезная нагрузка на межзвездных ракетах с традиционными двигательными установками обычно составляет одну тысячную от веса ракеты.
Одним из вариантов нагрузки может стать 32-ваттный лазер весом 1 грамм. Анализ любых помех от этого лазерного луча может помочь в исследованиях гравитационных эффектов, которые, в свою очередь, могут помочь выявить присутствие миров, слишком темных и и холодных, чтобы их можно было обнаружить иным способом. Например, гипотетическую Девятую Планету.
По предварительным расчетам, разработка прототипа корабля из аэрографита может стоить 1 миллион долларов. Каждый корабль может быть построен примерно за 1 000 долларов или меньше, а запуск ракеты для развертывания и тестирования этого корабля может стоить 10 миллионов долларов.
Однако существует одна серьезная проблема – пока что никто не создал какой-либо объект из этого материала размером больше нескольких сантиметров, а требуется создать аппарат размером в несколько метров. Исследователи считают, что создать структуру такого размера возможно.
Еще одна сложность, которая есть в данной концепции, это тот факт, что в настоящее время нет возможности контролировать траекторию сфер после их развертывания. Ее также придется решать.
Если бы бортовая электроника и оборудование могли позволить активное маневрирование, то, например, появилась бы возможность транспортировать небольшие массы - от 1 до 100 граммов - между Землей и Марсом в течение нескольких недель.
Предполагается, что в космос аппараты из аэрографита будут доставлять обычные ракеты, где они будут развернуты в нужную сторону для использования солнечного света для дальнейшего движения. Остается неясным, насколько хорошо эти сферы переживут транспортировку.
Хеллер сказал:
"Аэрографит хорошо сжимается. Даже после экстремального сжатия образец аэрографита может снова быть надут до исходного состояния. Так что, если мы сожмем аэрографитовый парус метрового размера в лаборатории, возможно, мы сможем отправить его в космос и снова надуть там перед запуском. Вопрос в том, как быть с его бортовой электроникой?"
В настоящее время ученые занимаются изучением, насколько хорошо аэрографит поглощает и отражает свет. Они подробно рассказали о своих открытиях онлайн 7 июля в журнале Astronomy & Astrophysics.
https://www.space.com/interstellar-spacecraft-carbon-foam-al...