Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
«Дурак подкидной и переводной» — классика карточных игр! Яркий геймплей, простые правила. Развивайте стратегию, бросайте вызов соперникам и станьте королем карт! Играйте прямо сейчас!

Дурак подкидной и переводной

Карточные, Настольные, Логическая

Играть

Топ прошлой недели

  • Rahlkan Rahlkan 1 пост
  • Tannhauser9 Tannhauser9 4 поста
  • alex.carrier alex.carrier 5 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
2981
AndreyFomin
AndreyFomin
3 года назад
Скриншоты комментов

Простыми словами⁠⁠

Простыми словами
[моё] Носки Квантовая запутанность Скриншот Комментарии
127
593
ZATOOMUCH
ZATOOMUCH
4 года назад
Наука | Научпоп

Физики заявили о прорыве в квантовой голографии⁠⁠

Физики заявили о прорыве в квантовой голографии Квантовая запутанность, Голография, Наука, Исследования, Новости, Длиннопост

Физики Университета Глазго заявили о прорыве в области квантовой голографии, которая позволяет создавать четкие и детализированные изображения, убирая помехи от нежелательных источников света и других внешних воздействий. В основе метода лежит квантовая запутанность поляризаций фотонов, когда свойства частиц оказываются взаимозависимы, несмотря на разделяющее их расстояние. Статья ученых опубликована в журнале Nature Physics. Кратко о прорывном исследовании рассказывается в пресс-релизе на Phys.org.


В обычной голографии изображение предмета чаще всего создается с помощью лазерного луча, который разделяется на два луча, называемых объектным и опорным. Объектный луч расширяется и освещает предмет, отражаясь и попадая затем на фотографическую пластинку. Опорный луч не касается предмета, отражается от зеркала и также падает на пластинку, взаимодействуя с лучом, отраженным от предмета, и создавая интерференционную картину. Во время экспонирования источники света, объект и пластинка должны оставаться неподвижными относительно друг друга, иначе голограмма будет испорчена.


Для живых объектов и нестабильных материалов голография возможна только при использовании интенсивного и короткого импульса света, что представляет опасность и проводится почти всегда в лабораториях со специальным оборудованием.

Физики заявили о прорыве в квантовой голографии Квантовая запутанность, Голография, Наука, Исследования, Новости, Длиннопост

В новом методе квантовой голографии также используются два луча, но они никогда не взаимодействуют друг с другом. Луч голубого лазера проходит через кристалл, разделяющий его на два пучка запутанных фотонов. Когда что-то изменяет свойства (направление движения и поляризация) фотона в одном пучке, это влияет и на свойства запутанного с ним фотона в другом. Как и в классической голографии, один луч используется для освещения объекта, при этом изменяются фазы световых волн в пучке.


Второй луч попадает в пространственный модулятор света, который частично снижает скорость проходящих через него фотонов. В результате световые волны приобретают иную фазу относительно своих спутанных партнеров.


Голограмма получается путем измерения корреляции между позициями запутанных фотонов с использованием отдельных мегапиксельных цифровых камер. Высококачественное изображение объекта получается путем объединения четырех голограмм, полученных для четырех различных фазовых сдвигов, накладываемых модулятором.


В эксперименте фазовое изображение было получено для нескольких объектов: букв UofG на жидкокристаллическом дисплее, птичьего пера и капли масла на предметном стекле микроскопа. Ученые отмечают, что квантовая голография лишена недостатков классической голографии, что позволяет создавать детализированные изображения, полезные для медицинских целей, например, визуализации функций отдельных клеток.


https://phys.org/news/2021-02-holography-quantum-revolutioni...


https://lenta.ru/news/2021/02/09/holograph/

Показать полностью 1
Квантовая запутанность Голография Наука Исследования Новости Длиннопост
60
239
ZATOOMUCH
ZATOOMUCH
4 года назад
Наука | Научпоп

Передача квантового запутанного состояния по кабелю - перед нами квантовый интернет и квантовый компьютер , это почти телепортация⁠⁠

Передача квантового запутанного состояния по кабелю - перед нами квантовый интернет и квантовый компьютер , это почти телепортация Квантовый компьютер, Квантовая запутанность, Достижение, Наука, Исследования, Новости, Длиннопост

Чтобы было понятно , что такое квантовая запутанность:Допустим  у нас есть два носка, чёрные с одной стороны , красные внутри.Эти носки - модель объектов, которые могут иметь какие-либо уникальные характеристики с двумя состояниями, и могут находиться только в одном из них: например спин, поляризация и т д.


Когда мы создаём эту пару носков одномоментно и только вместе,у нас один носок чёрный снаружи и красный внутри, второй носок красный снаружи и чёрный внутри.Свойство запутанности выражается в том ,что если мы вывернем первый носок, второй носок вывернется на другую сторону тоже.Мгновенно, быстрее скорости света.


То есть наружные цвета будут всегда противоположными.Теперь мы их разносим на тысячу километров, очень аккуратно, и выворачиваем первый носок, и вуаля, мгновенно быстрее скорости света выворачивается второй, передача информации состоялась.


Это грубая схема, в подробностях могут объяснить несколько ученых в России, но они заняты.

Ограничение запутанности в том, что объекты надо было генерировать(создавать) одновременно, и только потом разносить, и это проблема.


Ученым из США удалось впервые в мире передать состояние запутанности по сверхпроводящему  кабелю.


Исследователи из Притцкеровской школы молекулярной инженерии (PME) при Чикагском университете впервые отправили запутанные состояния кубитов через кабель связи, соединяющий один узел квантовой сети со вторым.

Кроме того, они усилили запутанное состояние через тот же кабель. Сначала они использовали кабель, чтобы запутать два кубита в каждом из двух узлов, а затем перепутать их с помощью других кубитов в узлах.


Результаты, опубликованные в журнале Nature, помогут сделать квантовые вычисления более осуществимыми и заложить основу для будущих сетей квантовой связи.

«Разработка методов, позволяющих передавать запутанные состояния, будет иметь важное значение для масштабирования квантовых вычислений», — подчеркнул профессор Эндрю Клеланд, руководивший исследованием.


Отправка запутанных фотонов по сети


Кубиты, или квантовые биты, являются основными единицами квантовой информации. Используя их квантовые свойства, такие как суперпозиция, и их способность связываться друг с другом, ученые и инженеры создают квантовые компьютеры следующего поколения, которые смогут решать ранее неразрешимые проблемы.


Группа Клеланда использует сверхпроводящие кубиты, крошечные криогенные схемы, которыми можно управлять электрически.


Чтобы передать запутанные состояния через коммуникационный кабель - сверхпроводящий кабель длиной один метр - исследователи создали экспериментальную установку с тремя сверхпроводящими кубитами в каждом из двух узлов. Они подключили по одному кубиту в каждом узле к кабелю, а затем отправили квантовые состояния в виде микроволновых фотонов по кабелю с минимальной потерей информации. Хрупкая природа квантовых состояний делает этот процесс довольно сложным.


Бывший постдокторант Клеланда, первый автор статьи Юпенг Чжун, смог разработать систему, в которой весь процесс передачи - от узла к кабелю к узлу - занимает всего несколько десятков наносекунд (наносекунда составляет одну миллиардную долю секунды). Это позволило им посылать запутанные квантовые состояния с очень небольшой потерей информации.


Система также позволила им «усилить» запутанность кубитов. Исследователи использовали по одному кубиту в каждом узле и запутали их вместе, по сути, отправив полуфотон через кабель. Затем они распространили эту запутанность на другие кубиты в каждом узле. Когда они были закончены, все шесть кубитов в двух узлах были запутаны в едином глобально запутанном состоянии.


На основе такой технологии можно реализовать сверхбыстрый интернет и квантовые компьютеры ,разнесенные в пространстве , облачного типа.Это качественный рывок в квантовом компьютерном  развитии.


https://news.uchicago.edu/story/first-time-researchers-send-...


https://www.nature.com/articles/s41586-021-03288-7


https://www.msn.com/en-ca/news/technology/qubit-breakthrough...


Для противников мгновенного взаимодействия запутанных частиц: из Википедии со ссылками


В 2008 году группе швейцарских исследователей из Университета Женевы удалось разнести два потока запутанных фотонов на расстояние 18 километров. Помимо прочего, это позволило произвести временны́е измерения с недостижимой ранее точностью. В результате было установлено, что если некое скрытое взаимодействие и происходит, то скорость его распространения должна как минимум в 100 000 раз превышать скорость света в вакууме. При меньшей скорости временные задержки были бы замечены


https://ru.m.wikipedia.org/wiki/Квантовая_запутанность

Показать полностью 1
[моё] Квантовый компьютер Квантовая запутанность Достижение Наука Исследования Новости Длиннопост
198
172
shebuk
shebuk
4 года назад

Что такое квантовая биология⁠⁠

Все во Вселенной состоит из элементарных частиц. Изучением их и связанных с ними явлений занимается квантовая физика — странная наука, где много всего неопределенного. Но что, если квантовые эффекты распространяются не только на квантовые масштабы, но и на жизнь в целом? Поисками ответа на этот вопрос и занимается квантовая биология.

Что такое квантовая биология Биология, Живая клетка, Организм, Квантовая биология, Квантовая запутанность, Квантовая физика, Квантовая механика, Длиннопост

«Если тебя квантовая физика не испугала, значит, ты ничего в ней не понял». © Нильс Бор, лауреат Нобелевской премии 1922 года, один из создателей современной физики


Биологи не очень любят связываться с физикой. Будучи студентами, они посещают вводные курсы по физике, а потом благодарят богов науки, что им больше не придется беспокоиться об Эйнштейне, Максвелле и Ньютоне. Что касается квантовой физики, то большинству биологов вообще нет нужды о ней задумываться. Они изучают молекулы в таких крупных масштабах, что им не надо знать ничего сверх основ квантовой механики. Привычной модели молекулы достаточно для изучения взаимодействий между триллионами органических молекул. Физики же изучают квантовую механику в вакууме при почти абсолютном нуле. Принято считать, что в условиях тепла и беспорядка, царящих в живых клетках, квантовые эффекты можно, по сути, игнорировать.


Между тем некоторые ученые предполагают, что существуют биологические феномены, которые можно объяснить квантовой механикой — и только. В своей книге «Что такое жизнь?» Эрвин Шредингер постулировал, что квантовая механика способна оказывать серьезное воздействие на клеточные функции. Он предположил, что генетический материал может храниться и наследоваться посредством сохранения информации в разных квантовых состояниях. И пусть позднее Джеймс Уотсон и Фрэнсис Крик выяснили, что ДНК — переносчик генетической информации, Шредингер дал начало квантовой биологии.


Квантовое туннелирование


Не так давно продуманные до мелочей эксперименты предоставили доказательство того, что квантовая биология сильно влияет на жизнь. Оказалось, ферменты — катализаторы реакций в клетке — используют так называемый туннельный эффект, или квантовое туннелирование. При помощи этого механизма они могут перемещать электрон или протон из одной части молекулы в другую.


Квантовое туннелирование предоставляет ферментам быстрый и эффективный способ переорганизации молекул для поддержания реакций. Этот процесс невозможно объяснить при помощи классической физики. Для понимания этих реакций необходимы квантовые вероятности и дуальности.


Туннельный эффект также играет роль в мутациях ДНК. ДНК — это двухцепочечная молекула, части которой удерживаются вместе при помощи водородных связей. Эти связи можно изобразить примерно так (см. картинку).

Что такое квантовая биология Биология, Живая клетка, Организм, Квантовая биология, Квантовая запутанность, Квантовая физика, Квантовая механика, Длиннопост

Диаграмма водородной связи в аденин-тимине / © Adam David Godbeer/Jim Al-Khalili/P. D. Stevenson


Белые атомы принадлежат водороду. В этом соединении есть две водородные связи. Считается, что атомы водорода могут «перепрыгивать» на другую сторону при помощи квантового туннелирования. Если цепочки ДНК разделены во время прыжка водорода на другую сторону, то эти связи могут скопироваться или воспроизвестись неправильно. Мутация, появившаяся в результате туннелирования водорода, потенциально может вызвать заболевание.


Квантовая когерентность


Фотосинтез — один из самых важных процессов жизни. Когда фотон света попадает в пигмент, он поглощается, а вместо него освобождается электрон. Затем электрон попадает в электрон-транспортную цепь, накапливающую химический потенциал, который можно использовать для генерации АТФ (аденозинтрифосфат, или аденозинтрифосфатная кислота). Но чтобы попасть в электрон-транспортную цепь, электрону нужно переместиться из одной точки, из которой его освобождает фотон, через хлорофилл, в точку, известную как реакционный центр. Есть множество путей, по которым электрон может достичь его.

Что такое квантовая биология Биология, Живая клетка, Организм, Квантовая биология, Квантовая запутанность, Квантовая физика, Квантовая механика, Длиннопост

Квантовая когерентность в фотосинтезе / © Jim Al-Khalili


При помощи принципов квантовой когерентности и квантового запутывания электроны могут перемещаться по самым эффективным путям, не затрачивая энергию на тепло. Согласно квантовой когерентности электроны могут двигаться в нескольких направлениях одновременно из-за своих волнообразных свойств. Таким образом, электроны способны перемещаться по нескольким разным путям одновременно для достижения реакционного центра. Этот феномен позволяет максимально эффективно переносить энергию.


Квантовая когерентность может влиять и на другие аспекты жизни. Некоторые ученые предполагают, что сетчатка человеческого глаза использует когерентность для передачи сигналов из глаза в мозг. Они утверждают, что фотоизомеризация — изменение в структуре фотонного рецептора — происходит так быстро, что такую скорость может обеспечить только квантовая когерентность. С учетом этого в природе вполне может существовать еще множество биохимических путей, использующих квантовую когерентность, и они только и делают, что ждут, когда их наконец откроют.


Квантовая запутанность


Запутанность — одна из самых сложных для понимания концепций квантовой механики. Она описывает взаимодействие между двумя или более квантовыми частицами. И пусть это еще не подтверждено, считается, что квантовая запутанность может объяснить магниторецепцию. Магниторецепция — способность организмов чувствовать магнитное поле и определять свое расположение на местности в соответствии с ним. Птицы и животные используют эту способность, чтобы чувствовать магнитное поле Земли и мигрировать. Долгое время точный механизм этого явления был тайной. Возможно, магнитное поле Земли влияет на механизм, использующий радикальные пары внутри сетчатки, а запутанность внутри этой пары может предоставлять организмам квантовый сигнал, работающий словно компас: об этом рассуждали Джим Аль-Халили и Джонджо МакФадден в своей книге «Жизнь на грани. Ваша первая книга о квантовой биологии».

Что такое квантовая биология Биология, Живая клетка, Организм, Квантовая биология, Квантовая запутанность, Квантовая физика, Квантовая механика, Длиннопост

Схематическое описание «квантового компаса» у птиц / © Zhang-qi Yin/Tongcang Li


Что же дальше?


Квантовая механика может влиять на многие биохимические функции. Некоторые считают, что обоняние — то, как мы чувствуем запахи — может быть результатом квантовых вибраций молекул. В то же время существуют исследования, указывающие на то, что с квантовой механикой связано броуновское движение внутри клетки.


В любом случае квантовая биология — молодое направление науки, но похоже, что у него есть серьезный потенциал. Остается только ждать и наблюдать за новыми исследованиями в этой области.

Источник: Naked Science


Читайте также:

– Гравитационное замедление времени: удивительный феномен искривленного пространства-времени;

– Самые безумные научные предсказания, ставшие реальностью;

– Петлевая квантовая гравитация: пространство-время, сшитое из кусочков.

Показать полностью 4
[моё] Биология Живая клетка Организм Квантовая биология Квантовая запутанность Квантовая физика Квантовая механика Длиннопост
18
223
shebuk
shebuk
4 года назад

Квантовая запутанность — королева парадоксов⁠⁠

Не так давно физики показали первые результаты работы миссии QUESS и запущенного в ее рамках на орбиту спутника Mozi, обеспечив рекордное разделение квантово запутанных фотонов расстоянием более 1200 км. В будущем это может привести к созданию квантовой линии связи между Пекином и Европой.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Мир вокруг велик и разнообразен – разнообразен настолько, что на одних масштабах проявляются законы, совершенно немыслимые для других. Законы политики и битломания никак не следуют из устройства атома – для их описания требуются свои «формулы» и свои принципы. Трудно представить, чтобы яблоко – макроскопический объект, поведение которого обычно следует законам ньютоновской механики, – взяло и исчезло, слилось с другим яблоком, превратившись в ананас. А между тем именно такие парадоксальные феномены проявляются на уровне элементарных частиц. Узнав, что это яблоко красное, вряд ли мы сделаем зеленым другое, находящееся где-нибудь на орбите. А между тем именно так действует явление квантовой запутанности, и именно это продемонстрировали китайские физики, с работы которых мы начали наш разговор. Попробуем разобраться, что же это такое и чем может помочь человечеству.


Бор, Эйнштейн и другие


Мир вокруг локален – иначе говоря, для того чтобы какой-то далекий объект изменился, он должен провзаимодействовать с другим объектом. При этом никакое взаимодействие не может распространяться со скоростью быстрее световой: это и делает физическую реальность локальной. Яблоко не может шлепнуть Ньютона по голове, не добравшись до нее физически. Вспышка на Солнце не может мгновенно сказаться на работе спутников: заряженным частицам придется преодолеть расстояние до Земли и провзаимодействовать с электроникой и частицами атмосферы. Но вот в квантовом мире локальность нарушается.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Самым знаменитым из парадоксов мира элементарных частиц можно назвать принцип неопределенности Гейзенберга, согласно которому невозможно точно определить величину обеих «парных» характеристик квантовой системы. Положение в пространстве (координата) или скорость и направление движения (импульс), ток или напряжение, величина электрической или магнитной компоненты поля – все это «взаимодополняющие» параметры, и чем точнее мы измерим один из них, тем менее определенным станет второй.


Когда-то именно принцип неопределенности вызвал непонимание Эйнштейна и его знаменитое скептическое возражение «Бог не играет в кости». Однако, похоже, играет: все известные эксперименты, косвенные и прямые наблюдения и расчеты указывают, что принцип неопределенности является следствием фундаментальной недетерменированности нашего мира. И снова мы приходим к несочетанию масштабов и уровней реальности: там, где существуем мы, все вполне определенно: если разжать пальцы и отпустить яблоко, оно упадет, притянутое гравитацией Земли. Но на уровне более глубинном причин и следствий попросту нет, а существует лишь пляска вероятностей.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Парадоксальность квантово запутанного состояния частиц в том и состоит, что «удар по голове» может произойти ровно одновременно с отрывом яблока от ветки. Запутанность нелокальна, и изменение объекта в одном месте мгновенно – и без всякого очевидного взаимодействия – меняет другой объект совершенно в другом. Теоретически мы можем отнести одну из запутанных частиц хоть на другой конец Вселенной, но все равно стоит нам «коснуться» ее партнера, оставшегося на Земле, и вторая частица откликнется моментально. Самому Эйнштейну поверить в это было непросто, и спор его с Нильсом Бором и коллегами из «лагеря» квантовой механики стал одним из самых увлекательных сюжетов в современной истории науки. «Реальность определенна, – как бы говорили Эйнштейн и его сторонники, – несовершенны лишь наши модели, уравнения и инструменты». «Модели могут быть какими угодно, но сама реальность в основе нашего мира никогда не определена до конца», – возражали адепты квантовой механики.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Выступая против ее парадоксов, в 1935 г. Эйнштейн вместе с Борисом Подольским и Натаном Розеном сформулировал свой парадокс. «Ну хорошо, – рассуждали они, – допустим, узнать одновременно координату и импульс частицы невозможно. Но что, если у нас есть две частицы общего происхождения, состояния которых идентичны? Тогда мы можем измерить импульс одной, что даст нам косвенным образом сведения об импульсе другой, и координату другой, что даст знание координаты первой». Такие частицы были чисто умозрительной конструкцией, мысленным экспериментом – возможно, поэтому достойный ответ Нильсу Бору (а точнее, его последователям) удалось найти только 30 лет спустя.


Пожалуй, первый призрак квантово-механических парадоксов наблюдал еще Генрих Герц, заметивший, что если электроды разрядника осветить ультрафиолетом, то прохождение искры заметно облегчается. Эксперименты Столетова, Томсона и других великих физиков позволили понять, что происходит это благодаря тому, что под действием излучения вещество испускает электроны. Однако происходит это совершенно не так, как подсказывает логика; например, энергия высвободившихся электронов не будет выше, если мы увеличим интенсивность излучения, зато возрастет, если мы уменьшим его частоту. Увеличивая же эту частоту, мы придем к границе, за которой никакого фотоэффекта вещество не проявляет – этот уровень у разных веществ разный.


Объяснить эти феномены удалось Эйнштейну, за что он и был удостоен Нобелевской премии. Связаны они с квантованием энергии – с тем, что она может передаваться лишь определенными «микропорциями», квантами. Каждый фотон излучения несет определенную энергию, и если ее достаточно, то электрон поглотившего его атома вылетит на свободу. Энергия фотонов обратно пропорциональна длине волны, и при достижении границы фотоэффекта ее уже недостаточно даже для сообщения электрону минимально нужной для выхода энергии. Сегодня это явление встречается нам повсеместно – в виде солнечных батарей, фотоэлементы которых работают именно на основе этого эффекта.


Эксперименты, интерпретации, мистика


В середине 1960-х Джон Белл заинтересовался проблемой нелокальности в квантовой механике. Ему удалось предложить математическую основу для вполне осуществимого эксперимента, который должен заканчиваться одним из альтернативных результатов. Первый итог «срабатывал», если принцип локальности действительно нарушается, второй – если все-таки он действует всегда и нам придется искать какую-то другую теорию для описания мира частиц. Уже в начале 1970-х такие эксперименты были поставлены Стюартом Фридманом и Джоном Клаузером, а затем – Аленом Аспэном. Упрощенно говоря, задача состояла в создании пар спутанных фотонов и измерении их спинов, одного за другим. Статистические наблюдения показали, что спины оказываются не свободными, а скоррелированными друг с другом. Такие опыты проводятся с тех пор почти непрерывно, все более точные и совершенные – и результат один и тот же.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Стоит добавить, что механизм, объясняющий квантовую запутанность, неясен до сих пор, существует лишь явление – и различные интерпретации дают свои объяснения. Так, в многомировой интерпретации квантовой механики запутанные частицы – это лишь проекции возможных состояний одной-единственной частицы в других параллельных вселенных. В транзакционной интерпретации эти частицы связывают стоячие волны времени. Для «квантовых мистиков» феномен запутанности – еще один повод рассматривать парадоксальный базис мира как способ объяснения всему непонятному, от самих элементарных частиц до человеческого сознания. Мистиков можно понять: если вдуматься, то от последствий кружится голова.


Простой опыт Клаузера–Фридмана указывает на то, что локальность физического мира в масштабе элементарных частиц может нарушаться, и сама основа реальности оказывается – к ужасу Эйнштейна – расплывчатой и неопределенной. Это не значит, что взаимодействие или информация могут передаваться мгновенно, за счет запутанности. Разнесение запутанных частиц в пространстве идет с обычной скоростью, результаты измерения случайны, и пока мы не измерим одну частицу, вторая не будет содержать никакой информации о будущем результате. С точки зрения получателя второй частицы, результат совершенно случаен. Почему же все это нас интересует?

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Как запутать частицы: возьмите кристалл с нелинейными оптическими свойствами – то есть такой, взаимодействие света с которым зависит от интенсивности этого света. Например, триборат лития, бета-борат бария, ниобат калия. Облучите его лазером подходящей длины волны – и высокоэнергетические фотоны лазерного излучения будут иногда распадаться на пары запутанных фотонов меньшей энергии (это явление называется «спонтанным параметрическим рассеянием») и поляризованных в перпендикулярных плоскостях. Остается удержать запутанные частицы в целости и разнести как можно дальше друг от друга.


Кажется, при разговоре о принципе неопределенности мы уронили яблоко? Поднимите его и бросьте об стену – разумеется, оно разобьется, ведь в макромире не работает еще один квантово-механический парадокс – туннелирование. При туннелировании частица способна преодолевать энергетический барьер более высокий, чем ее собственная энергия. Аналогия с яблоком и стеной, конечно, очень приблизительная, зато наглядная: туннельный эффект позволяет фотонам проникать внутрь отражающей среды, а электронам – «не замечать» тонкой пленки оксида алюминия, которая покрывает провода и вообще-то является диэлектриком.

Наша бытовая логика и законы классической физики к квантовым парадоксам не слишком-то приложимы, но они все равно работают и широко применяются в технике. Физики как будто (временно) решили: пусть мы пока не знаем до конца, как это работает, но пользу из этого можно извлечь уже сегодня. Туннельный эффект лежит в основе работы некоторых современных микрочипов – в виде туннельных диодов и транзисторов, туннельных переходов и т. д. И, конечно, нельзя забывать о сканирующих туннельных микроскопах, в которых туннелирование частиц обеспечивает наблюдение за отдельными молекулами и атомами – и даже манипуляцию ими.


Коммуникация, телепортация и спутник


В самом деле, давайте представим, что мы «квантово запутали» два яблока: если первое яблоко окажется красным, то второе обязательно зеленым, и наоборот. Мы можем отправить одно из Петербурга в Москву, сохранив их спутанное состояние, но это, казалось бы, все. Только когда в Петербурге яблоко будет измерено как красное, второе станет зеленым в Москве. До момента измерения возможности предсказать состояние яблока нет, потому что (все те же парадоксы!) самого определенного состояния они не имеют. Какой же в этом запутывании толк?.. А толк нашелся уже в 2000‑х, когда Эндрю Джордан и Александр Коротков, опираясь на идеи советских физиков, нашли способ как бы «не до конца» измерять, а значит, и фиксировать состояния частиц.

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

Используя «слабые квантовые измерения», можно как бы взглянуть на яблоко вполглаза, мельком, стараясь угадать его цвет. Можно проделывать такое снова и снова, фактически не посмотрев на яблоко как следует, но вполне уверенно определиться с тем, что оно, например, красное, а значит, спутанное с ним яблоко в Москве будет зеленым. Это позволяет использовать спутанные частицы снова и снова, а предложенные около 10 лет назад методы позволяют хранить их, запустив бегать по кругу неопределенно долгое время. Остается унести одну из частиц подальше – и получить исключительно полезную систему.


Откровенно говоря, создается ощущение, что пользы в запутанных частицах куда больше, чем принято думать, просто наша скудная фантазия, скованная все тем же макроскопическим масштабом реальности, не позволяет придумать им настоящие применения. Впрочем, и уже существующие предложения вполне фантастичны. Так, на основе спутанных частиц можно организовать канал для квантовой телепортации, полного «считывания» квантового состояния одного объекта и «записи» его в другой, как если бы первый просто перенесся на соответствующее расстояние. Более реалистичны перспективы квантовой криптографии, алгоритмы которой обещают почти «невзламываемые» каналы связи: любое вмешательство в их работу скажется на состоянии запутанных частиц и будет тут же замечено владельцем. Тут-то на сцену и выходит китайский эксперимент QESS (Quantum Experiments at Space Scale – «Квантовые эксперименты в космическом масштабе»).


Компьютеры и спутники


Проблема в том, что на Земле трудно создать надежную связь для разнесенных на большое расстояние запутанных частиц. Даже в самом совершенном оптоволокне, по которому идет передача фотонов, сигнал постепенно затухает, а требования к нему здесь особенно высокие. Китайские ученые даже подсчитали, что если создавать запутанные фотоны и рассылать их в две стороны с плечами длиной около 600 км – по половине расстояния от центра квантовой науки в Дэлинхе до центров в Шэньчжэне и Лицзяне, – то можно рассчитывать поймать по спутанной паре примерно за 30 тыс. лет. Иное дело космос, в глубоком вакууме которого фотоны пролетают такое расстояние, не встречая каких-либо преград. И тут на сцену выходит экспериментальный спутник Mozi («Мо-Цзы»).

Квантовая запутанность — королева парадоксов Квантовая запутанность, Квантовая физика, Парадокс, Альберт Эйнштейн, Длиннопост

На космическом орбитальном аппарате установили источник (лазер и нелинейный кристалл), каждую секунду выдававший несколько миллионов пар запутанных фотонов. С дистанции от 500 до 1700 км одни эти фотоны направлялись в наземную обсерваторию в Дэлинхе на Тибете, а вторые – в Шэньчжэне и Лицзяне на юге Китая. Как и можно было ожидать, основные потери частиц происходили в нижних слоях атмосферы, однако это лишь около 10 км пути каждого пучка фотонов. В результате же канал запутанных частиц покрыл расстояние от Тибета до юга страны – около 1200 км, а в ноябре этого года была открыта новая линия, которая соединяет провинцию Аньхой на востоке с центральной провинцией Хубэй. Пока что каналу не хватает надежности, но это уже дело техники.


В ближайшее время китайцы планируют запуск более совершенных спутников для организации таких каналов и обещают, что уже скоро мы увидим действующую квантовую связь между Пекином и Брюсселем, фактически с одного конца континента до другого. Очередной «невозможный» парадокс квантовой механики обещает очередной скачок в технологиях.

Источник: Naked Science


Читайте также:

– Самые безумные научные предсказания, ставшие реальностью;

– Петлевая квантовая гравитация: пространство-время, сшитое из кусочков;

– Что такое квантовая биология.

Показать полностью 8
[моё] Квантовая запутанность Квантовая физика Парадокс Альберт Эйнштейн Длиннопост
72
481
ZATOOMUCH
ZATOOMUCH
4 года назад
Наука | Научпоп

Достижение физиков - прорыв в квантовой запутанности⁠⁠

Физики впервые ввели в состояние запутанности макрообъекты.

Результат будет иметь практическое применение в квантовых коммуникациях и поможет создать новые ультрачувствительные датчики. Почему, подробно рассказано ниже.


Мы не раз слышали о квантовом запутывании фотонов, но на этот раз учёные из Университета Нильса Бора в Дании квантово запутали... облако атомов и мембрану (своего рода барабан) из нитрида кремния толщиной 13 нанометров и длиной несколько миллиметров, которая слегка вибрировала под ударами фотонов.


Эти фотоны, или элементарные частицы света, появились благодаря разреженному облаку из миллиарда атомов цезия, "запертых" внутри небольшой сильно охлаждённой камеры.

Несмотря на то, что это два очень разных объекта, миллиметровый "барабан" и облако атомов, они представляют собой запутанную квантовую систему. И эта система раздвигает границы квантовой механики.


«Чем больше объекты, чем дальше они друг от друга, чем сильнее они различаются, тем интереснее становится запутанность как с фундаментальной, так и с прикладной точки зрения, - рассказывает ведущий автор недавней работы Юджин Ползик. - С новым результатом стало возможным запутывание очень разных объектов».

Достижение физиков - прорыв в квантовой запутанности Квантовая физика, Квантовая запутанность, Достижение, Длиннопост

Облако атомов барабанит по мембране при помощи испускаемых фотонов, а физики "слышат" этот звук. Фото с сайта nbi.ku.dk.


Чтобы понять, чем важно это достижение, вспомним, что два квантово запутанных объекта "чувствуют" друг друга, несмотря на километры между ними. Если изменяется состояние одного, то меняется состояние и другого. Они словно бы синхронизированы, хотя между ними нет никакой физической связи.

Также стоит вспомнить, что любой объект во Вселенной как бы немного вибрирует. Это движение не останавливается даже при абсолютном нуле температуры (происходят так называемые нулевые колебания). И это явление ограничивает представление о любой из систем, которую физики пытаются изучить (физики называют это принципом неопределённости).

В своём эксперименте команда Юджина Ползика фактически показала, что объекты их запутанной системы движутся настолько синхронно, что удаётся преодолеть ограничения, накладываемые принципом неопределённости.



«Квантовая механика похожа на палку о двух концах - она даёт нам прекрасные новые технологии, но также ограничивает точность измерений, которые с классической точки зрения могут показаться простыми», - объясняет ещё один автор новой работы Михал Парняк.


Аспирант Кристофер Остфельдт объясняет далее: «Представьте себе различные способы реализации квантовых состояний как своего рода зоопарк различных реальностей... Если, например, мы хотим построить какое-то устройство, чтобы использовать различные качества, которыми все они обладают и в которых они выполняют разные функции, решают разные задачи, необходимо будет изобрести язык, на котором все они смогут разговаривать. Квантовые состояния должны иметь возможность общаться, чтобы мы могли использовать весь потенциал квантового устройства".

Теперь у учёных фактически есть способ заставить двух зверей такого зоопарка рычать на одном языке.



Ещё один конкретный, хотя, пожалуй, и сложный для понимания перспектив пример. Квантовое зондирование. Оно позволит у знать о микромире много нового и интересного. Ведь когда только один из двух запутанных объектов будет подвергаться внешнему воздействию, запутанность позволит измерить нужные свойства второго объекта с невероятной по современным меркам чувствительностью, не ограниченной нулевыми колебаниями. Это как заглянуть в удивительный квантовый мир с помощью микроскопа. Если представить, сколько всего нового и важного учёные узнали с его помощью о мире бактерий и клеток, то голова просто взрывается от мыслей, как много нового мы узнаем при помощи квантового зондирования.
Достижение физиков - прорыв в квантовой запутанности Квантовая физика, Квантовая запутанность, Достижение, Длиннопост

Достижение открывает новые фантастические технические возможности. Иллюстрация IQOQI Innsbruck\Harald Ritsch.


А ещё новое достижение потенциально позволяет увеличить и без того фантастическую чувствительность детекторов гравитационных волн. Эти волны можно наблюдать, потому что они сотрясают зеркала интерферометра. Но даже чувствительность LIGO ограничена квантовой механикой, потому что зеркала лазерного интерферометра также подвергаются нулевым колебаниям. Эти колебания приводят к шуму, мешающему наблюдать крошечное движение зеркал, вызванное гравитационными волнами.

Теперь, думаю, понятно, почему такого рода достижения - это важный шаг к безграничной точности измерений. Модельный эксперимент, демонстрирующий такую возможность, и был проведён в лаборатории Юджина Ползика.


Видимый барабан, вибрирующий от "дуновения" фотонов, исходящих от облака атомов, - это совсем другая история в жизни физиков всего мира.


https://www.nature.com/articles/s41567-020-1031-5


https://zen.yandex.ru/media/vesti_nauka/fiziki-vpervye-kvant...

Показать полностью 2
Квантовая физика Квантовая запутанность Достижение Длиннопост
91
657
DELETED
5 лет назад

Легко понять, когда учитель умеет объяснять⁠⁠

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки, Скриншот

#comment_87710283

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки, Скриншот

Баянометр ругается на картинку - не обращайте внимания, картинка как предыстория.

Основное содержание поста в скриншоте комментариев.

Показать полностью 2
Комментарии на Пикабу Квантовая запутанность Квантовая физика Юмор Носки Скриншот
74
6
Sinijveter
Sinijveter
5 лет назад

Ответ на пост «Доступно о квантовой механике»⁠⁠1

Ответ на пост «Доступно о квантовой механике» Квантовая запутанность, Суперпозиция, Носки, Скриншот, Из сети, Reddit, Ответ на пост
Показать полностью 1
[моё] Квантовая запутанность Суперпозиция Носки Скриншот Из сети Reddit Ответ на пост
6
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии