
Немного истории
47 постов
47 постов
10 постов
180 постов
4 поста
Интерфейсы дисководов либо становятся стандартом, либо терпят неудачу на рынке
Стандартизированное аппаратное и программное обеспечение для подключения дисководов к другим компьютерным компонентам расширяет рынок и ускоряет принятие новых технологий. В 1977 году начались усилия по определению интерфейса SMD (Storage Module Drive) компании Control Data Corporation в качестве стандарта отрасли хранения данных. Впоследствии каждый новый интерфейс, разработанный для дисководов, либо становился стандартом, либо терпел неудачу на рынке. Следующие доминируют в различных сегментах рынка.
SCSI — системный интерфейс Shugart Associates (SASI), разработанный под руководством Ларри Буше, который позже основал Adaptec, был принят в качестве интерфейса малых компьютерных систем (SCSI) в 1982 году. Первоначально использовавшийся как универсальный периферийный интерфейс, SCSI превратился в высокопроизводительный интерфейс для дисков и лент, такой как SAS (Serial Attached SCSI).
Базовая конструкция IDE использует 16-битную параллельную передачу данных через 40-контактный ленточный кабель.
IDE - В 1985 году Билл Фрэнк из Western Digital написал спецификацию для интеграции электроники Host Bus Adapter (HBA) на плату дисковода компьютера IBM PC AT. Интерфейс IDE (Integrated Drive Electronics) быстро занял лидирующее положение на рынке дисководов, подключаемых к ПК. Распространение вариаций привело к проекту AT-Attachment (ATA) в 1989 году и ATAPI (ATA Packet Interface) в 1993 году.
Fibre Channel – Работа над определением Fibre Channel началась в 1988 году, чтобы предоставить SCSI, IPI (интеллектуальный периферийный интерфейс) и HIPPI (высокопроизводительный параллельный интерфейс) с ростом до коммутируемого последовательного интерфейса 100 Мбит/с. После того, как Brocade Communications Systems представила пакетный коммутатор, продвигаемый основателем Кумаром Малавалли, быстрое принятие сетей хранения данных (SAN) изменило то, как компании управляли хранением данных.
Принятие стандартов в отрасли хранения данных распространяется на дополнительные спецификации форм-фактора упаковки, разъемов и трансиверов. Усилия по упрощению интеграции хранения данных продолжаются как добровольная деятельность в нескольких технических комитетах.
5,25- и 3,5-дюймовые диски и носители информации отвечают требованиям персональных компьютеров
Алан (Эл) Шугарт, бывший менеджер проекта DASD в IBM, Сан-Хосе, который присоединился к Memorex в 1969 году, основал Shugart Associates (SA) в 1973 году для создания компьютера для малого бизнеса. Шугарт ушел до завершения проекта, но ключевой компонент запланированной системы сохранился в виде 8-дюймового дисковода , представленного в 1975 году.
В ответ на запрос Wang Laboratories о выпуске более дешевого привода компания анонсировала в 1976 году 5,25-дюймовый привод. Привод SA 400 «Minifloppy» на 110 КБ продавался OEM-клиентам по цене 390 долларов плюс 45 долларов за десять дискет. Digital Research Inc. перенесла операционную систему CP/M на новый меньший размер диска и помогла сделать SA 400 популярным решением для малого бизнеса и персональных компьютеров. В начале 1980-х годов Shugart Associates, к тому времени принадлежавшая Xerox, заключила контракт с Matsushita на крупносерийное производство.
Matsushita получила права на продажу другим компаниям и стала крупнейшим в мире производителем дисководов. Еще один стандарт появился в 1979 году, когда группа под руководством Ларри Буше (впоследствии основателя Adaptec) разработала «Системный интерфейс Shugart Associates» (SASI), который впоследствии превратился в SCSI (Small Computer System Interface) .
Спрос на более прочную упаковку дискет и меньший корпус привел к появлению конкурирующих форматов от 3,5 до 2 дюймов. В 1982 году Комитет по производству микродискет согласовал спецификацию 3,5 дюйма на основе дизайна Sony, что вызвало международную борьбу поставщиков за обслуживание растущего рынка ПК. Хотя теперь они были заключены в жесткий внешний корпус и имели емкость до 1,44 МБ, название «дискета» продолжало использоваться. В 1994 году компания Iomega, Сан-Диего, Калифорния, представила дисковод ZIP, который хранил 100 МБ на 3,5-дюймовых сменных картриджах «супердискет». К концу десятилетия дисководы и диски ZIP стали одними из самых популярных покупок периферийных устройств для ПК на вторичном рынке. Производство дисководов достигло пика в 1990 году, составив около 120 миллионов единиц в год, прежде чем пойти на спад в пользу записываемых компакт-дисков .
Первое значительное отклонение от технологии жестких дисков и пути носителей IBM
Операция по производству дисков Control Data Corporation (CDC) Normandale в Эдине, штат Миннесота, отошла от стандартов и технологий IBM в проекте, запущенном в 1972 году для нового продукта сменных носителей, чтобы конкурировать с известной по слухам системой «Winchester» .
Будучи уже ведущим поставщиком дисковых накопителей для своих собственных компьютеров, а также для других производителей оригинального оборудования (OEM), в прошлом компания в целом следовала примеру IBM в области носителей и технологий. В этом случае CDC не имела доступа к новой конструкции контактной/старт-стопной головки IBM и хотела избежать дорогостоящей сложной сборки сменных головок дисков конфигурации 3340.
Менеджер проекта Том Мёрнан возглавил команду, которая разработала первую модель из семейства продуктов Storage Module Drive (SMD), о которых CDC объявила на Национальной компьютерной конференции (NCC) в Нью-Йорке в 1973 году. CDC 9760 представлял собой монтируемый в стойку дисковый накопитель с несовместимым с IBM сменным 5-дисковым блоком емкостью 40 МБ, но с более высоким уровнем плотности записи и производительности (6000 бит/дюйм и 10 Мбит/с), достигаемым с помощью уникальной головки с наклонной загрузкой, которая летала на расстоянии менее 30 микродюймов над диском, вращающимся со скоростью 3600 об/мин. После версии на 80 МБ (9762), анонсированной в 1974 году, последовали диски на 150 МБ (9764) и 300 МБ (9766), которые на протяжении многих лет были самыми емкими сменными блоками на рынке.
Благодаря простому в установке интерфейсу SMD, используемому в широком семействе стационарных и сменных носителей, CDC поставила более 100 000 единиц к 1981 году, став крупнейшим в мире поставщиком OEM-дисков. После принятия в качестве стандарта ANSI в 1982 году Ampex, Century Data и более 20 других производителей предложили SMD-совместимые продукты.
IBM 3340 использует новые недорогие головки чтения/записи с низкой нагрузкой
В 1969 году IBM поручила менеджеру проекта в Сан-Хосе Кеннету Э. Хотону разработать «хранилище с прямым доступом», которое соответствовало бы производительности высокопроизводительной системы IBM 3330 по цене, привлекательной для клиентов с недорогими компьютерами System/370. Жесткий диск IBM3340 (HDD), поставки которого начались в ноябре 1973 года, стал пионером в области новых недорогих, малонагруженных головок чтения/записи со смазанными дисками и установил то, что стало доминирующей технологией HDD. Эл Шугарт назвал эту новую «головку винчестера» одним из четырех наиболее значимых достижений в области массового хранения.
Выведенная из оригинальной спецификации системы с двумя шпинделями, каждый с емкостью диска 30 МБ, Хотон, как сообщается, сказал: «Если это 30-30, то это должен быть Winchester» после винтовочного патрона .30-30 Winchester.
При нагрузке менее 20 граммов ферритовая головка чтения/записи, запатентованная членом команды Майком Уорнером, начинала и останавливалась в контакте с диском на выделенной зоне приземления, но пролетала над диском на воздушном подшипнике толщиной 18 микродюймов между магнитной головкой и вращающимся диском. Диски, шпиндель и подшипники, каретка позиционирования головки и узлы головки-руки были включены в съемный герметичный картридж под названием IBM 3348 Data Module, изобретенный Ричардом Б. Малвани и Рудольфом В. Лисснером, с емкостью 35 и 70 МБ. Были достигнуты плотность дорожек 300 дорожек на дюйм и время доступа 25 миллисекунд.
Модель IBM 3350 (1975) превратила модуль данных в несъемную головку дискового узла емкостью 317 МБ, которую некоторые обозреватели назвали «настоящим Винчестером», и которая остается основной концепцией компоновки жестких дисков по сей день.
MCA и Philips разрабатывают лазерную технологию для распространения потребительских фильмов
Диски викторианской музыкальной шкатулки и граммофонные пластинки сыграли значительную роль в развитии музыкальной индустрии, но до появления лазерного диска в конце 1970-х годов ни один немагнитный диск не оказал значительного влияния на компьютерное хранение. Обратите внимание, что «диск» и «диск» использовались взаимозаменяемо различными организациями в индустрии хранения.
Среди пионерских патентов на оптические диски можно отметить заявки Дэвида Пола Грегга на прозрачные носители (1958); Джеймса Рассела на фотографический процесс (1966) и Джона Клемонса (1971) на технологию VideoDisk CED (Capacitance Electronic Disc) компании RCA. В 1969 году голландские физики Клаас Компаан и Пит Крамер из компании Phillips разработали аналоговую систему, используя лазерный диод и отражательные оптические методы, что привело к совместной публичной демонстрации в декабре 1972 года лазерного проигрывателя Phillips Video Long Play (VLP) с дисками, произведенными MCA (Music Corporation of America). В 1978 году вместе с «Челюстями», первым фильмом MCA на диске, компания Philips представила в США потребительский лазерный проигрыватель дисков Magnavox VH-8000 за 749 долларов. Компания Pioneer of Japan зарегистрировала торговую марку LaserDisc, а затем в 1979 году выпустила модель VP 1000.
Для учебных и образовательных целей корпорация Digital Equipment Corporation (DEC) разработала интерфейс интерактивной видеоинструкционной системы (IVIS), а в 1979 году экспозиция Чикагского музея науки и промышленности позволила посетителям осуществлять поиск в газете Chicago Tribune.
Лазерные диски предлагали превосходное изображение и звук по сравнению с более ранними форматами видеокассет Betamax и VHS, но из-за высокой цены и отсутствия возможности записи они не имели успеха на рынке. Однако основные элементы технологии лазерных дисков эволюционировали от аналоговой к цифровой технологии в течение нескольких поколений в популярные системы CD-ROM , CD-R и DVD .
Базовой задачей криптографии является шифрование данных и аутентификация отправителя. Это легко выполнить, если как отправитель, так и получатель имеют псевдослучайные последовательности бит, называемые ключами. Перед началом обмена каждый из участников должен получить ключ, причем эту процедуру следует выполнить с наивысшим уровнем конфиденциальности, так чтобы никакая третья сторона не могла получить доступ даже к части этой информации. Задача безопасной пересылки ключей может быть решена с помощью квантовой рассылки ключей QKD (Quantum Key Distribution). Надежность метода держится на нерушимости законов квантовой механики. Злоумышленник не может отвести часть сигнала с передающей линии, так как нельзя поделить электромагнитный квант на части. Любая попытка злоумышленника вмешаться в процесс передачи вызовет непомерно высокий уровень ошибок. Степень надежности в данной методике выше, чем в случае применения алгоритмов с парными ключами (например, RSA). Здесь ключ может генерироваться во время передачи по совершенно открытому оптическому каналу. Скорость передачи данных при этой технике не высока, но для передачи ключа она и не нужна. По существу квантовая криптография может заменить алгоритм Диффи-Хелмана, который в настоящее время часто используется для пересылки секретных ключей шифрования по каналам связи.
Первый протокол квантовой криптографии (BB84) был предложен и опубликован в 1984 году Беннетом и Брассардом. Позднее идея была развита Экертом в 1991 году. В основе метода квантовой криптографии лежит наблюдение квантовых состояний фотонов. Отправитель задает эти состояния, а получатель их регистрирует. Здесь используется квантовый принцип неопределенности, когда две квантовые величины не могут быть измерены одновременно с требуемой точностью. Так поляризация фотонов может быть ортогональной диагональной или циркулярной. Измерение одного вида поляризации рэндомизует другую составляющую. Таким образом, если отправитель и получатель не договорились между собой, какой вид поляризации брать за основу, получатель может разрушить посланный отправителем сигнал, не получив никакой полезной информации.
Отправитель кодирует отправляемые данные, задавая определенные квантовые состояния, получатель регистрирует эти состояния. Затем получатель и отправитель совместно обсуждают результаты наблюдений. В конечном итоге со сколь угодно высокой достоверностью можно быть уверенным, что переданная и принятая кодовые последовательности тождественны. Обсуждение результатов касается ошибок, внесенных шумами или злоумышленником, и ни в малейшей мере не раскрывает содержимого переданного сообщения. Может обсуждаться четность сообщения, но не отдельные биты. При передаче данных контролируется поляризация фотонов. Поляризация может быть ортогональной (горизонтальной или вертикальной), циркулярной (левой или правой) и диагональной (45 или 1350).
В качестве источника света может использоваться светоизлучающий диод или лазер. Свет фильтруется, поляризуется и формируется в виде коротких импульсов малой интенсивности. Поляризация каждого импульса модулируется отправителем произвольным образом в соответствии с одним из четырех перечисленных состояний (горизонтальная, вертикальная, лево- или право-циркулярная).
Получатель измеряет поляризацию фотонов, используя произвольную последовательность базовых состояний (ортогональная или циркулярная). Получатель открыто сообщает отправителю, какую последовательность базовых состояний он использовал. Отправитель открыто уведомляет получателя о том, какие базовые состояния использованы корректно. Все измерения, выполненные при неверных базовых состояниях, отбрасываются. Измерения интерпретируются согласно двоичной схеме: лево-циркулярная поляризация или горизонтальная - 0, право-циркулярная или вертикальная - 1. Реализация протокола осложняется присутствием шума, который может вызвать ошибки. Вносимые ошибки могут быть обнаружены и устранены с помощью подсчета четности, при этом один бит из каждого блока отбрасывается. Беннет в 1991 году предложил следующий протокол.
Отправитель и получатель договариваются о произвольной перестановке битов в строках, чтобы сделать положения ошибок случайными.
Строки делятся на блоки размера k (k выбирается так, чтобы вероятность ошибки в блоке была мала).
Для каждого блока отправитель и получатель вычисляют и открыто оповещают друг друга о полученных результатах. Последний бит каждого блока удаляется.
Для каждого блока, где четность оказалась разной, получатель и отправитель производят итерационный поиск и исправление неверных битов.
Чтобы исключить кратные ошибки, которые могут быть не замечены, операции пунктов 1-4 повторяются для большего значения k.
Для того чтобы определить, остались или нет необнаруженные ошибки, получатель и отправитель повторяют псевдослучайные проверки:
Получатель и отправитель открыто объявляют о случайном перемешивании позиций половины бит в их строках.
Получатель и отправитель открыто сравнивают четности. Если строки отличаются, четности должны не совпадать с вероятностью 1/2.
Если имеет место отличие, получатель и отправитель, использует двоичный поиск и удаление неверных битов.
Если отличий нет, после m итераций получатель и отправитель получают идентичные строки с вероятностью ошибки 2-m.
Схема реализация однонаправленного канала с квантовым шифрованием показана на рис. .1. Передающая сторона находится слева, а принимающая - справа. Ячейки Покеля служат для импульсной вариации поляризации потока квантов передатчиком и для анализа импульсов поляризации приемником. Передатчик может формировать одно из четырех состояний поляризации (0, 45, 90 и 135 градусов). Собственно передаваемые данные поступают в виде управляющих сигналов на эти ячейки. В качестве канала передачи данных может использоваться оптическое волокно. В качестве первичного источника света можно использовать и лазер.
На принимающей стороне после ячейки Покеля ставится кальцитовая призма, которая расщепляет пучок на два фотодетектора (ФЭУ), измеряющие две ортогональные составляющие поляризации. При формировании передаваемых импульсов квантов приходится решать проблему их интенсивности. Если квантов в импульсе 1000, есть вероятность того, что 100 квантов по пути будет отведено злоумышленником на свой приемник. Анализируя позднее открытые переговоры между передающей и принимающей стороной, он может получить нужную ему информацию. В идеале число квантов в импульсе должно быть около одного. Здесь любая попытка отвода части квантов злоумышленником приведет к существенному росту числа ошибок у принимающей стороны. В этом случае принятые данные должны быть отброшены и попытка передачи повторена. Но, делая канал более устойчивым к перехвату, мы в этом случае сталкиваемся с проблемой "темнового" шума (выдача сигнала в отсутствии фотонов на входе) приемника (ведь мы вынуждены повышать его чувствительность). Для того чтобы обеспечить надежную транспортировку данных логическому нулю и единице могут соответствовать определенные последовательности состояний, допускающие коррекцию одинарных и даже кратных ошибок.
Дальнейшего улучшения надежности криптосистемы можно достичь, используя эффект EPR (Binstein-Podolsky-Rosen). Эффект EPR возникает, когда сферически симметричный атом излучает два фотона в противоположных направлениях в сторону двух наблюдателей. Фотоны излучаются с неопределенной поляризацией, но в силу симметрии их поляризации всегда противоположны. Важной особенностью этого эффекта является то, что поляризация фотонов становится известной только после измерения. На основе EPR Экерт предложил крипто-схему, которая гарантирует безопасность пересылки и хранения ключа. Отправитель генерирует некоторое количество EPR фотонных пар. Один фотон из каждой пары он оставляет для себя, второй посылает своему партнеру. При этом, если эффективность регистрации близка к единице, при получении отправителем значения поляризации 1, его партнер зарегистрирует значение 0 и наоборот. Ясно, что таким образом партнеры всякий раз, когда требуется, могут получить идентичные псевдослучайные кодовые последовательности. Практически реализация данной схемы проблематична из-за низкой эффективности регистрации и измерения поляризации одиночного фотона.
Неэффективность регистрации является платой за секретность. Следует учитывать, что при работе в однофотонном режиме возникают чисто квантовые эффекты. При горизонтальной поляризации (H) и использовании вертикального поляризатора (V) результат очевиден - фотон не будет зарегистрирован. При 450 поляризации фотона и вертикальном поляризаторе (V) вероятность регистрации 50%. Именно это обстоятельство и используется в квантовой криптографии. Результаты анализа при передаче двоичных разрядов представлены в таблице .1. Здесь предполагается, что для передатчика логическому нулю соответствует поляризация V, а единице - +450, для принимающей стороны логическому нулю соответствует поляризация -450, а единице - Н.
Понятно, что в первой и четвертой колонке поляризации передачи и приеме ортогональны и результат детектирования будет отсутствовать. В колонках 2 и 3 коды двоичных разрядов совпадают и поляризации не ортогональны. По этой причине с вероятностью 50% может быть позитивный результат в любом из этих случаев (и даже в обоих). В таблице предполагается, что успешное детектирование фотона происходит для случая колонки 3. Именно этот бит становится первым битом общего секретного ключа передатчика и приемника.
Однофотонные состояния поляризации более удобны для передачи данных на большие расстояния по оптическим кабелям. Такого рода схема показана на рис. .2 (алгоритм В92; R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson and C. Simmons, "Quantum cryptography over optical fibers", Uni. of California, Physics Division, LANL, Los Alamos, NM 87545, USA).
В алгоритме В92 приемник и передатчик создают систему, базирующуюся на интерферометрах Маха-Цендера. Отправитель определяет углы фазового сдвига, соответствующие логическому нулю и единице (F A=p/2), а приемник задает свои фазовые сдвиги для логического нуля (F B=3p/2) и единицы (F B=p). В данном контексте изменение фазы 2p соответствует изменению длины пути на одну длину волны используемого излучения.
Хотя фотоны ведут себя при детектировании как частицы, они распространяются как волны. Вероятность того, что фотон, посланный отправителем, будет детектирован получателем равна
PD = cos2{(F A - F B)/2} [1]
и характеризует интерференцию амплитуд волн, распространяющихся по верхнему и нижнему путям (см. рис. .2). Вероятность регистрации будет варьироваться от 1 (при нулевой разности фаз) до нуля. Здесь предполагается, что отправитель и получатель используют фазовые сдвиги (F A, F B) = (0, 3 p/2) для нулевых бит и (F A, F B) = (p/2, p) для единичных битов (для алгоритма ВВ84 используются другие предположения).
Для регистрации одиночных фотонов, помимо ФЭУ, могут использоваться твердотельные лавинные фотодиоды (германиевые и InGaAs). Для понижения уровня шума их следует охлаждать. Эффективность регистрации одиночных фотонов лежит в диапазоне 10-40%. При этом следует учитывать также довольно высокое поглощение света оптическим волокном (~0,3-3ДБ/км). Схема интерферометра с двумя волокнами достаточно нестабильна из-за разных свойств транспортных волокон и может успешно работать только при малых расстояниях. Лучших характеристик можно достичь, мультиплексируя оба пути фотонов в одно волокно [7] (см. рис. .3).
В этом варианте отправитель и получатель имеют идентичные неравноплечие интерферометры Маха-Цендера (красным цветом отмечены зеркала). Разность фаз длинного и короткого путей DT много больше времени когерентности светового источника. По этой причине интерференции в пределах малых интерферометров не происходит (Б). Но на выходе интерферометра получателя она возможна (В). Вероятность того, что фотонные амплитуды сложатся (центральный пик выходного сигнала интерферометра В) равна
P = (1/8)[1 + cos(FA - FB)] [2]
Следует заметить, что эта амплитуда сигнала в четыре раза меньше чем в случае, показанном на рис .2. Разветвители пучка (полупрозрачные зеркала) могут быть заменены на оптоволоконные объединители (coupler). Практические измерения для транспортного кабеля длиной 14 км показали эффективность генерации бита ключа на уровне 2,2 10-3 при частоте ошибок (BER) около 1,2%.
Помимо своих широко известных и благоприятных для бизнеса следствий, закон Мура несет в себе также и предсказуемый конец: нанотехнологии, подходя к атомному пределу, неизбежно столкнутся с квантовыми свойствами материи, с которыми современная ИТ-индустрия еще не научилась работать. Это будет означать радикальную трансформацию современной вычислительной парадигмы, основанной на известном поведении сигнала, четко определяемом состоянии носителя этого сигнала, повторяемых и проверяемых цепочках причин и следствий. Из всех квантовых информационных технологий, которые должны прийти на смену существующим, ближе всего к созданию приложений, пригодных для использования в реальной жизни, подошла квантовая криптография.
Технология квантовой криптографии опирается на принципиальную неопределенность поведения квантовой системы – невозможно одновременно получить координаты и импульс частицы, невозможно измерить один параметр фотона, не исказив другой. Это фундаментальное свойство природы в физике известно как принцип неопределенности Гейзенберга, сформулированный в 1927 г.
Согласно этому принципу, попытка измерения взаимосвязанных параметров в квантовой системе вносит в нее нарушения, и полученная в результате такого измерения информация определяется принимаемой стороной как дезинформация.
Если пытаться что-то сделать с фотоном – измерить поляризацию (т. е. направление вращения) или длину волны (т. е. цвет), то его состояние изменится.
Две квантовые величины не могут быть измерены одновременно с требуемой точностью, и измерение одного вида поляризации рандомизует другую составляющую. Если отправитель и получатель не договорились между собой, какой вид поляризации брать за основу, получатель может разрушить посланный отправителем сигнал, не получив никакой полезной информации.
Благодаря этому возможно построение каналов передачи данных, защищенных от подслушивания: получатель всегда сможет определить, не перехвачена ли информация, и при положительном ответе повторить передачу с другим ключом.
Отправитель кодирует отправляемые данные, задавая определенные квантовые состояния, а получатель регистрирует эти состояния. Затем получатель и отправитель совместно обсуждают результаты наблюдений. В итоге можно быть уверенным, что переданная и принятая кодовые последовательности тождественны. Обсуждение результатов касается ошибок, внесенных шумами или злоумышленником, и ни в малейшей мере не раскрывает содержимого сообщения. Может обсуждаться четность сообщения, но не отдельные биты. При передаче данных контролируется поляризация фотонов.
В 1984 г. Чарльз Беннет из IBM и Жиль Брассар из Монреальского университета предположили, что фотоны могут быть использованы в криптографии для получения фундаментально защищенного канала. Для представления нулей и единиц они решили взять фотоны, поляризованные в различных направлениях, и предложили простую схему квантового распределения ключей шифрования, названную ими ВВ84. Позднее, в 1991 г. идея была развита Экертом. Эта схема использует квантовый канал, по которому участники защищенного сеанса связи (традиционно называемые у шифровальщиков Алиса и Боб) обмениваются сообщениями, передавая их в виде поляризованных фотонов.
Импульс горизонтально поляризованных фотонов проходит через горизонтальный поляризационный фильтр. Если поворачивать фильтр, то поток пропускаемых фотонов будет уменьшаться до тех пор, пока при повороте на 90 градусов ни один фотон из горизонтально поляризованного импульса не сможет проскочить фильтр. При повороте фильтра на 45 градусов он пропустит горизонтально поляризованный фотон с вероятностью 50%.
Таким образом, измерить поляризацию света можно лишь тогда, когда заранее известно, в какой системе он был поляризован. Если известно, что свет поляризован либо вертикально, либо горизонтально, то пропустив его через горизонтальный фильтр, мы узнаем по результату, была ли поляризация 0 или 90 градусов. Если поляризация была диагональная, а фильтр мы поставили горизонтальный, то по результату невозможно сказать, был ли свет поляризован на +45 или –45 градусов.
Поэтому канал, образованный потоком световых импульсов, невозможно подслушать – неправильно поставленный фильтр разрушает канал.
Алиса и Боб секретничают. Алиса посылает Бобу последовательность фотонных импульсов. Каждый из импульсов случайным образом поляризован в одном из четырех направлений: | – \ /. Например, Алиса посылает: | \ / – \ – |.
Боб настраивает свой детектор произвольным образом на измерение серии либо диагонально, либо ортогонально поляризованных импульсов (мерить одновременно и те и другие нельзя): X X + X X + +.
В тех случаях, где Боб угадал поляризацию, он получит правильный результат (такую же поляризацию, какую посылала Алиса). В остальных случаях результат будет случайным.
Боб и Алиса по открытому каналу сообщают друг другу использованные типы поляризаций (диагональная или ортогональная). Оставляют только правильно измеренные.
В нашем примере Боб угадал поляризацию 2-го, 5-го, 6-го и 7-го импульсов. Таким образом, остаются: \ \ – |.
По заранее оговоренным условиям эти результаты превращаются в последовательность битов (например, 0 и 45 принимаются за единицу, 90 и -45 – за ноль).
Перехват сообщения-ключа Боб и Алиса могут обнаружить посредством контроля ошибок, сверив случайно выбранные из сообщения биты. Несовпадения указывают на перехват сообщения, тогда ключ изменяется, т. е. передается повторно.
Если расхождений нет, то биты, использованные для сравнения, отбрасываются, ключ принимается. С вероятностью 2–k (где k – число сравненных битов) канал не прослушивался.
В 1989 г. все те же Беннет и Брассар в Исследовательском центре IBM построили первую работающую квантово-криптографическую систему. Она состояла из квантового канала, содержащего передатчик Алисы на одном конце и приемник Боба на другом, размещенные на оптической скамье длиной около метра в светонепроницаемом полутораметровом кожухе размером 0,5х0,5 м. Собственно квантовый канал представлял собой свободный воздушный канал длиной около 32 см. Макет управлялся от персонального компьютера, который содержал программное представление пользователей Алисы и Боба, а также злоумышленника.
В 1989 г. передача сообщения посредством потока фотонов через воздушную среду на расстояние 32 см с компьютера на компьютер завершилась успешно. Основная проблема при увеличении расстояния между приемником и передатчиком – сохранение поляризации фотонов. На этом основана достоверность способа.
Активные исследования в области квантовой криптографии ведут IBM, GAP-Optique, Mitsubishi, Toshiba, Национальная лаборатория в Лос-Аламосе, Калифорнийский технологический институт, молодая компания MagiQ и холдинг QinetiQ, поддерживаемый британским министерством обороны.
Квантовая криптография как сегмент рынка только начинает формироваться, и здесь пока на равных могут играть и мировые компьютерные корпорации, и небольшие начинающие компании.
В IBM продолжаются фундаментальные исследования в области квантовых вычислений, начатые группой Чарльза Беннетта. Ими занимается принадлежащая корпорации лаборатория Almaden Research Center. О практических достижениях IBM в квантовой криптографии известно немногое – эти работы мало рекламируются.
Исследователям из Лос-Аламоса удалось передать фотонный ключ по оптоволокну на расстояние 48 км со скоростью в несколько десятков килобайтов в секунду. Этого достаточно, чтобы соединить между собой отделения банка или правительственные учреждения.
Созданная при участии Женевского университета компания GAP Optique под руководством Николаса Гисина совмещает теоретические исследования с практической деятельностью. Специалистам этой фирмы удалось передать ключ на расстояние 67 км из Женевы в Лозанну с помощью почти промышленного образца аппаратуры. Этот рекорд был побит корпорацией Mitsubishi Electric, передавшей квантовый ключ на расстояние 87 км, правда, на скорости в один байт в секунду.
Исследования в области квантовой криптографии ведутся и в европейском исследовательском центре Toshiba Research Europe Limited (TREL), расположенном в Кембридже (Великобритания). Отчасти они спонсируются английским правительством; в них участвуют сотрудники Кембриджского университета и Империал-колледжа в Лондоне. Сейчас они могут передавать фотоны на расстояние до 100 км. Таким образом, технология может использоваться только в пределах одного города. Есть надежда, что вскоре будут выпущены коммерческие продукты.
Два года назад доктор Эндрю Шилдс и его коллеги из TREL и Кембриджского университета создали диод, способный испускать единичные фотоны. В основе нового светодиода лежит "квантовая точка" – миниатюрный кусочек полупроводникового материала диаметром 15 нм и толщиной 5 нм, который может при подаче на него тока захватывать лишь по одной паре электронов и дырок. Рекомбинация одного электрона с одной дыркой приводит к испусканию фотона. При этом ток, подаваемый на "квантовую точку" подбирается так, чтобы в рекомбинации участвовала только одна пара электрон – дырка. Но даже если новый светодиод испустит два фотона, они будут характеризоваться разной длиной волны, что позволяет отсечь лишнюю частицу при помощи фильтра. Обычные светодиоды и лазеры испускают фотоны группами, что теоретически дает возможность доступа к определению характеристик отдельных фотонов, в то время как другие фотоны продолжат свой путь в неизменном виде.
Чтобы обойти трудность, связанную с созданием источников отдельных фотонов, Фредерик Гроссан из Института оптики в Орсэ (Франция) разработал методику, позволяющую шифровать сообщения с помощью импульсов, состоящих из нескольких сот фотонов. На ее безопасность не влияет даже ослабление сигнала на больших расстояниях. Гроссан отказался от отдельных квантов света и предложил усреднять значения амплитуды и фазы электрического поля группы фотонов. Как и поляризация отдельного фотона, эти переменные связаны друг с другом принципом неопределенности. Однако в отличие от поляризации фотона, принимающей одно из двух значений вдоль каждого ортогонального направления, эти переменные могут принимать непрерывный ряд значений.
Подобные исследования в квантовой криптографии ведутся одновременно несколькими группами. Но только группе Гроссана удалось продемонстрировать практические перспективы, а также создать аппаратуру и ПО для работы с квантовым ключом. При измерении непрерывного ряда значений уже не обязательно регистрировать каждый фотон. В ходе экспериментальной демонстрации удалось передать зашифрованные данные со скоростью 75 Кбит/с – при том, что более половины фотонов терялось.
Такая схема потенциально обладает намного большим быстродействием, чем схемы со счетом единичных фотонов. Это делает ее, по мнению разработчиков, весьма привлекательной для быстрой передачи секретных данных на расстояния менее 15 км. Перспективы ее использования на больших дистанциях требуют дополнительного изучения.
В исследования высокоскоростной квантовой криптографии углубилась и корпорация NEC в лице своего института NEC Research Institute. Над прототипами коммерческих систем квантовой криптографии, действующих по оптоволоконным линиям связи, работает подразделение телекоммуникационного гиганта Verizon Communications – BBN Technologies.
Команда Северо-Западного университета (США) сотрудничает с Telcordia Technologies и BBN Technologies, стараясь довести технологию до коммерческого применения. Им удалось передать зашифрованные данные по оптоволокну со скоростью 250 Мбит/с. Теперь стоит задача доказать, что схема позволяет сигналам проходить сквозь оптические усилители. В этом случае метод можно будет использовать не только в специальных оптоволоконных линиях связи между двумя точками, но и в более широких сетях. Еще эта команда работает над тем, чтобы достичь скоростей порядка 2,5 Гбит/с. Исследования Северо-Западного университета в области квантовой криптографии финансируются DARPA – оборонным ведомством США.
Министерством обороны Великобритании поддерживается исследовательская корпорация QinetiQ, активно совершенствующая технологию квантовой шифрации. Эта компания появилась на свет в результате деления британского агентства DERA (Defence Evaluation and Research Agency) в 2001 г., вобрав в себя все неядерные оборонные исследования. О своих достижениях она широкой публике пока не сообщает.
К исследованиям присоединилось и несколько молодых компаний, в том числе швейцарская Id Quantique, представившая коммерческую систему квантовой криптографии, и Magiq Technologies из Нью-Йорка, выпустившая прототип коммерческой квантовой криптотехнологии собственной разработки. MagiQ Technologies была создана в 1999 г. на средства крупных финансовых институтов. Помимо собственных сотрудников с ней взаимодействуют научные работники из целого ряда университетов США, Канады, Великобритании и Германии. Вице-президентом MagiQ является Алексей Трифонов, в 2000 г. защитивший докторскую диссертацию в Петербургском университете. Год назад Magiq получила 7 млн. долл. от нескольких инвесторов, включая основателя Amazon.com Джеффа Безоса.
В продукте Magiq средство для распределения ключей (quantum key distribution, QKD) названо Navajo – по имени индейцев Навахо, язык которых во время Второй мировой войны американцы использовали для передачи секретных сообщений, поскольку за пределами США его никто не знал. Navajo способен в реальном времени генерировать и распространять ключи средствами квантовых технологий и предназначен для обеспечения защиты от внутренних и внешних злоумышленников. Продукт Navajo находится в состоянии бета-тестирования и станет коммерчески доступным в конце года. Несколько коммуникационных компаний тестируют Navajo в своих сетях.
Интерес к квантовой криптографии со стороны коммерческих и военных организаций растет, так как эта технология гарантирует абсолютную защиту. Создатели технологий квантовой криптографии вплотную приблизились к тому, чтобы выпустить их из лабораторий на рынок. Осталось немного подождать, и уже очень скоро квантовая криптография обеспечит еще один слой безопасности для тех, у кого паранойя является привычным состоянием психики – банкиров и сотрудников спецслужб.